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1.0 OVERVIEW

- This report constitutes the first phase of research conducted by

Axiomatix wherein our aim was to derive, evaluate and compare various detec-

tor structures whose purpose is to intercept a spread-spectrum communication

transmitter. The transmitter under surveillance employs a variety of modu-

lation/spreading/transmission techniques which are invariably assumed to

emit the message-bearing signal in deep background noise or interference.

Thus, the challenging task of the intercepting detector is to reveal as best

he can any transmission of the unfriendly spread waveform in the presence

* Oof a strongly obscuring noisy environment.
Naturally, the degree of success achieved by the interceptor when de-

tecting the presence of the communicator's spread signal depends on the amount

of information available to him regarding the structure of that signal. At one

extreme, the interceptor's most fortunate situation would be to acquire the

spreading code itself ("crack" the code). This being toe demanding, he must

settle for less, such as approximate knowledge of the signal's carrier centel

frequency, code rate, code epoch, spreading bandwidth, etc., or a subset thereof.

At the other extreme, he might know almost nothing*; in which case, he could

resort to a simple energy discriminator device ("radiometer") since it is, on

many occasions, a low-SNR asymptotically optimal detector. In this report, our

main interest is to investigate the possibility that the interceptor could do

to better by optimally processing whatever information is available to him between

the two extremes cited above.

The ltectability of the primary candidates for low-probability-of-

intercept (LPI) waveforms, such as direct-sequence (DS), frequency-hopping (FH),

time-hopping (TH) and their hybrids, is customarily related to two factors:

(1) performance level of the interceptor's detector whose only function is to

monitort the communicated messages ad, (2) amount of signal processing (i.e.,

complexity) associated with such performance. Thus, the exploitability of a

spread-spectrum waveform is measured in terms of the complexity required of

the interceptor's receiver, so that it can perform such surveillance, as well

as in terms of the level of its power spectral density (PSD) and the resulting

probability of intercept.

Approximate spectral band location is a minimum prerequisite for any
interceptor.

tIntercepting/jamming combinations would also be of interest at a more

advanced stage of study. %

!'
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In subsequent sections, it will be shown that the detectability

(exploitability) of a spread signal is greatly dependent on the Interceptor's

knowledge regarding the form of both the waveform and the interference. In

other words, one should know not only the spreading format used (plus, possib-

ly, some other parameters*), but it is also very helpful to be able to identi-

fy the kind of background noise or interference involved. Although most of

this report deals with white Gaussian noise as the dominant form of (omni-

present) interference, a case is made in the final section about the impact

of nonwhite (random tones, in particular) interference. It will be shown in

Sections 3 through 5.1 that, when white noise is the only deterrent, the gains

achieved by intelligent processing of the received waveform can vary from
modest to significant (always as compared to the performance of a radiometer),

depending on the scenario at hand. However, when random interfering tones

are present and a DS or a hybrid FH/DS is detected, those gains become Impres-

sive (many tens of decibels, for example). For details, see section 5.2.

In searching for those structures which perform the aforementioned

tasks, we start from the optimal solutions, as derived from applying the opti-

mal likelihood-ratio rule. The results assume a good deal of knowledge about

the signal parameters (although never the spreading code itself) and could thus

become rather academic in most practical situations. Furthermore, they typically
suffer from the common symptom of prohibitive implementatlonal complexity. Thus,

it is important to consider suboptimal structures and evaluate their relative

loss with respect to the (unattainable) optimal performance. This has indeed

been the spirit which permeated the present work.

The report is organized as follows: In section 2, we classify the

various receivers and briefly lay the theoretical groundwork for evaluating the

forthcoming detector structures. In Sections 3. 4 and 5, we develop the theory

for DS, TH and FH signals, respectivelyt. This is also the order by which the

relative gains from sophisticated receivers seem to increase when faced by white

noise. In particular, a two-reception, synchronous, coherent DS detector can
result in a gain of up to 4.5 dB in signal-to-noise ratio (SNR) above the radi-

ometer. Each of the three aforementioned features of this detector contributes

approximately 1.5 dB; however, each also imposes strenuous conditions on the

See Section 2 for a detailed discussion.

tLet us note that the hybrid FH/DS of section 5.2 can also be thought

of as a DS signal in colored interference.

'S'
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system implementation. This kind of modest relative benefit must be

* attributed to the "noise-like" appearance of a high-rate DS code, which makes

it hard to distinguish from wideband thermal noise. On the other hand, TH or

FH can look spectrally different from DS, so that higher gains can be expected;

this is documented in Sections 4 and 5. We note, however, that those gains are

typically associated with excessive complexity; in which case, implementation

becomes the cardinal issue. This prompted us to investigate suboptimal, but

still very efficient, schemes which are suggested by today's technology (e.g.,

real-time autocorrelation devices). The application of such novel ideas in

Section 5 has established conditions (both by analysis and simulation), under

which one can anticipate significant-to-impressive gains over the radiometer,

even in the presence of white noise. It is shown in Section 5 that a proper

measure of performance improvement (defined in section 5.1) is proportional to

TH 2 , where YH is the hop SNR of an FH system. The proportionality constant de-

pends on algorithmic parameters, but is independent of the assumed tactical

scenario. Thus, by properly translating yH into physical parameters (i.e.,

transmitter/intercepter distance, signal power, antenna gains, etc.), one can

arrive at certain threshold values in the proximity of which the signal becomes

highly detectable. Although this would be the bottom line of a global inter-

ception analysis, this task will not be undertaken here, as it is highly sce-

nario dependent.

In conclusion, the findings of this report can serve as broad analyt-

ical guidelines for the determination and evaluation of a variety of detectors

in the context of LPI interception. They also serve to motivate a further pur-

suit of techniques which, in light of today's (and tomorrow's) technology,

emerge as very appealing, sophisticated and promising alternatives to the sim-

plistic solutions of the past.

C
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2.0 DETECTOR CLASSIFICATION AND PERFORMANCE MEASURES

In this section, we first classify a variety of receivers which an

interceptor could employ to detect the presence of a wideband (spread) signal

imbedded in white and/or nonwhite interference. Furthermore, we discuss some

approximate measures of performance upon which the assessment for any detec-

tor's merit is based. We should note here that such measures give a quanti-

tative feeling of what can be expected from certain detectors but do not pro-

vide any indication of the structure's implementational complexity, which is

definitely an important parameter. Therefore, a total evaluation of the sys-

tem effectiveness should incorporate that as a separate, but indispensable,

consideration.

The classification attempted here is summarized in Figure 2.1. Wide-

band detectors can first be classified as optimal or suboptimal. We term "op-

4 ~ timal" those structures which result from a straightforward application of the

*] generalized likelihood ratio theory to this problem and invoke a number of as-

suptions regarding the signal structure. For instance, optimal solutions typi-

- cally assume knowledge of certain parameters (code rate or hopping rate, SNR,

4P carrier frequencies, etc.) and average over the unknown ones (timing epochs,

true hopping or code sequences, etc.). Since, however, optimal structures are

- often hard to implement, one resorts to "suboptimal" solutions whereby either

one (or more) assumptions are removed or certain "atypical" nonlinearitles, such

* as the in cosh(.) function, are substituted by simpler ones as, for instance, a

square-law device.

A second classification results from the nature of the spread-

spectrum signal for which the intercepting device is designed, so it can be

a DS, FH, TH or hybrid detector. Also, DS and TH detectors can be coherent
or noncoherent, depending on whether or not the carrier phase is known. FH

detectors are assumed to be noncoherent from hop to hop due to the nature

of the communicating channel and the transmitter wideband FH synthesizers.

The presence or absence of timing (epoch) information about the spread-

ing code distinguishes detectors as synchronous or asynchronous. It is clear

that timing is initially unavailable since the detector does not even know if

the signal is there; hence, asynchronous structures naturally attract more prac-

tical interest. However, synchronous and/or coherent detectors will also be

considered--not only because they provide useful upper bounds in performance--butalso because of the conceptual possibility of improved detector structures,
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aided by the recursive estimation of pertinent parameters [8]. Furthermore, by

quantizing the continuous-epoch uncertainty region into an adequate finite num-

ber of points, matched-detector structures can be devised that are synchronized

to each of those levels and whose outputs are combined to yield the final deci-

sion variable. Thus, since the maximum code-epoch uncertainty equals a chip

time*, one concludes that good nonsynchronous detectors can be constructed from

combinations of a few synchronous ones. More discussion on this topic is pro-

vided in later sections.

Finally, we classify the detectors according to whether they expect to

operate in the presence of white (and typically Gaussian, such as thermal noise)

or nonwhite interference. The maximum-likelihood approach renders itself to the

first case most easily, while its formulation is cumbersome for the second. Ac-

cordingly, the theory is fairly mature for AWGN interference, while it is still

at the exploratory level for scenarios which call for more complicated interfer-

ence forms.

Let us now briefly discuss analyt'.al ways for measuring performance
in the present context. It is well known [3] that, under the common detection- I
performance criteria (most notably, the Neyman-Pearson philosophy), generalized

likelihood ratios yield optimal hypothesis-testing solutions, and performance is

measured by the resulting pair of detection and false-alarm probabilities (PD's

PFA)" Furthermore, it can be shown that, in many cases of practical interest, I
the overall likelihood ratio (LR) can be expressed as the product of individual

LR's due to the statistical independence of successive code chips (random DS

code) or hopping slots (TH or FH). When the true model for the problem does not

allow for such assumptions (as in the case of a random, but fixed, carrier phase),

the resulting LR is too complicated for either analysis or implementation . The

performance of such decision schemes is assessed by bounding arguments (see the

following sections) so that the product LR can always be thought of as the ana-

lytical cornerstone. Since the log-likelihood ratio (LLR) is not only theoret-

ically equivalent, but also more convenient to implement than an LR (it turns

products into sums), it will serve as our point of departure.

The number of terms entering the summation of the LLR is typically

large--it equals the total number of chips (DS) or time slots (TH) or frequency

slots (FH) observed. Therefore, it is reasonble to conclude, via a central-limit

This clearly assumes a purely random code sequence for which a full
chip time shift corresponds to another realization of the same stochastic process.

In addition, it can be argued that the superposition of random data

on DS or TH, such as PSK modulation, invalidates the notion of a constant carrier
phase.
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• type of argument, that the distribution of the resulting LLR is approximately

41 Gaussian under either hypothesis. This constitutes the basic assumption upon

which performance is derived in this report. In other words, the pair (PDPFA)

is expressed in terms of the Gaussian integral function

Q(x) - 1 ]'expI-z 2/2t dz (2-1)

x

*" and its inverse Q-I(.); furthermore, using the approximation that the LLR pos-

sesses the same variance under either hypothesis, it is easily shown that per-

formance is quantified by the distance d, defined as

d = Q-1LPFA] - Q[P](2-2)

which is a function of the decision rule and the system parameter values.

Peterson et al [3, section 4.9] have invoked the Gaussian assumption

about the LLR in order to show that d2 is equal to the difference of the means

of the LLR under the two hypothesis (hence, the notion of distance) and is also

equal to its variance. Most important, d can be related to the original product

LR A via*
€2

d £(JAI2 H0}) = In(I. + varJAIHO ) (2-3)

where the second equality results from the fact that 8JAIHo}= 1 for every LR.
Therefore, (2-3) measures the performance of any LLRt , which could include arbi-

trary memoryless nonlinearities (indeed, the optimal ones). Since many of them

are hard to implement, however, it is of interest to examine the penalty in per-

formance incurred when going from optimal to suboptimal decision rules just by

simplifying (or approximating) those nonlinearities. Clearly, the suboptimal
rules are also associated with some distance d, as per (2-2), which we shall

denote by d (approximate) as opposed to the 'exact" distance dex derived
app rx

from (2-3). The other approximations nonwithstanding, the difference between

d and d should signify the loss paid for implementational simplicity. In
appr ex
addition, d will serve as the yardstick when comparing the approximate rulesapp r* resulting from various other assumptions (or the lack thereof).

Here, 9{-} and var{.} stand for the statistical mean and variance,

respectively.

tAlways within the Gaussian assumption.
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3.0 DETECTION OF DIRECT-SEQUENCE SIGNALS IN THE PRESENCE OF AWGN

In this section, we conside- and analyze wideband detectors for DSj

waveforms. It will be assumed throughout that the receiver has knowledge of

the carrier frequency and code rate and that the code is biphase modulating

the carrier. For the carrier phase, the two possibilities of it being known

(coherent detection) and unknown (noncoherent detection) are examined separately

in sections 3.1 and 3.2, respectively. A common assumption in both of these

sections is that the detectors are synchronous, i.e., the code chip-timing

epoch is known. In most practical situations, this is rather unrealistic; the

synchronous results can then be thought of as upper bounds on the performance

of any asynchronous detector. Furthermore, by quantizing the continuous-epoch

uncertainty region into an adequate finite number of points, matched-detector

structures can be devised which are synchronized to each of these levels and

whose outputs are combined to yield the final decision variable. More discus-

sion on the cost of asynchronism is given in section 3.3. Section 3.4 discusses

some gains derived from combining two independent receptions, ranks the perfor-

mance of the aforementioned detectors and compares them to that of the radiometer.

In order to introduce some notation, let the high-rate, ±1-valued

random spreading code c(t) be represented by

c(t) = cn p(t - nTc - eTc) (3-1) *.

P %

where p(t) is a unit pulse of duration Tc seconds andjcn . is a sequence of ,' '

independent, identically distributed) (lid) random variables (rv's), with

Pr cn = I = Pr cn = -I = 0.5. Furthermore, the chip epoch is modeled by the

rv e, uniformly distributed over (0,1). The waveform observed by the detector

is therefore given by

Sc(t) coscwot + + n(t) .I)1
J.

r(t) ( (0 4 t < T) (3-2)

n(t) CHO)

0i
AV

a ~ V Y'.'V% .a ~- ***~ a - . - .- -. .~0
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where S, wo0 and * are the average signal power, carrier radian frequency and
carrier phase, respectively, under H1 , and n(t) is bandpas. AWGN with one-sided

power spectral density (PSO) of N0 W/Hz. The observation time is T seconds,

which we assume to be an integer multiple of the chip time, i.e., T - NTc; N a

positive integer. Such an assumption is the least restrictive since, in prac-

tice, N is generally a large number (of the order of hundreds or higher). How-

ever, a somewhat stronger restriction is embedded in (2), namely, the assumption

that, under hypothesis H1, the signal is present during the whole observation

interval. That excludes the possibility of the signal either starting or ending

at any random time in (0,T). Still, such a formulation is important because it

provides meaningful and fairly simple comparative conclusions which (a) would

otherwise be obscured by mathematical complexities and, (b) can be argued to

extend to more general models.

In terms of the above notation, a synchronous detector implies that c

is identically zero, while a coherent one means that * is known. The detector

for which * is unknown but constant over the observation interval (0,T) will be

called carrier noncoherent*. For computational purposes, we also consider the

* fictitious chip-noncoherent detector, where phase is assumed to change randomly

from chip to chip. Although this is totally unrealistic, it is discussed here

because its readily derived performance serves as a very useful lower bound to

the performance of the optimal, carrier-noncoherent receivers, which are diffi-

cult to analyze.

3.1 Synchronous Coherent Detectors

When both the random phase * and random chip epoch e are assumed known,
the detector is asked to perform the following composite hypothesis testing prob-

lem: Decide between the alternatives HO and H1 , where

t'
ct)+ n1(t) CI

r(t) nI( 0 ) CO < t NTc) (3-3)hi(t) CHO) .

Hypothesis H1 is composite because it contains all possible patterns that the

code can assume in NTc seconds. Although we consider only random codes (in

This clearly assumes that the observation duration is well within
the coherence time of the spread-spectrum channel.

4N
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which case, there are exactly M - 2N such patterns), some of the steps below•would also be valid for deterministic codes. The subscript I in nhIM) indi-

cates that only the inphase component of the noise contributes, with a flat

two-sided PSD of NO/2 W/Hz. At this point, we should emphasize that the prob-

lem formulation is reminiscent of, but not identical to, the M-ary communica-

tion problem of detecting the presence of one of M = 2N possible waveforms em-

bedded in noise. In the latter case, we know a priori that one of the signals

is present, but we don't know which one it is. In the current case, our only

interest is detecting the presence of any one of the M equilikely candidate

* waveforms without identifying it.

Starting with classical well-known results about detectors designed

to minimize the probability of error [3], it follows that the optimal detector

performs a generalized likelihood ratio threshold comparison. Specifically,

the generalized likelihood ratio is

2N f(r(t)IH,,ci(t);O < t < T) HiACr(t))  = 0 (3-4)

i=1 f(r(t)IHo) 0E

where fCr(t)jHi) indicates the conditional likelihood functional of the hypo-
thesis Hi , given the observation r(t);O 4 t < T, and ci(t) is the ith pattern

out of the 2N total possible. For the case of AWGN, the generalized likelihood
ratio in (3-4) reduces to the following form:

-I 2N 1 2YI f" 0 / NTc
' exp - Yc

r ACr(t)) - "
T
c exp N r(t) ci(t) dt

= 0

where

91STc

*c - NO  (3-6)

o ,V1 0



is the predetection (or chip) SNR, cj is the jth chip of the ith pattern, and

* rj is given by

JTrj f- r(t) dt (3-7)

(.j-i)T c

The expression in (3-5) can be further simplified using certain symmetries and

identities. Indeed, it is shown in Appendix A that (3-5) is expressible as
0

,&-. N J2 ) HI

) TF exp -Yc cosh r > 0 (34a)
0

4' or, equivalently,

NH

44

LnA~r(t)) =-Nyf + I In csr KInA(3-8b)
c 1=1 c oHrj 0 0

We note that (3-8) could have been derived directly based on the statistical in-

dependence of successive chips and the AWGN Csee [6)). The somewhat oifferent

'9w approach preferred here, however, is more easily generalized to models where

successive chips are not independent (c.f. section 3.2).

A structure implementing the rule (3-8) is shown in Figure 3.1 with

f(x) = In cosh(x). Its operation is as follows: A time-synchronized, chip-by-4.

chip, coherent integration of the received waveform r(t) results in a sequence

of rv's ri, each of which is separately processed by the memoryless nonlinear-

ity f(.), then summed over the desired length of N chips to produce the decision

statistic. Let us notice that the optimal f(.) is an even function, which can be

be interpreted as the receiver's attempt to compensate for his lack of knowledge

regarding the sign of each integrated code chip.

The mean under H1 of the random argument of the In cosh(.) function

in (3-8b) is 2 yc, which is also its variance under HO. Therefore, for typical

predetection SNR values below -10 dB or so, the approximation In cosh(x) = x2/2

is applicable; in which case, (3-8) reduces to the approximate (suboptimal) rule

y.5

5 1"

4,

* ' ~ ' ... p. -. 4. . *
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l 
N 2 H1

A' = r > A0  (3-9)
J=i i , 0

Since the aforementioned approximation of the in cosh(x) function becomes in-

creasingly tight as x 0 0, it follows that (3-9) is asymptotically optimal as

y c -0.
C Within the theoretical framework of Section 2, the performance of

(3-9) is easily derived. The mean and variance of A' are given by (for proof,

see Appendix B)

, JA' IHk = N(NoTc)( + Yc (k=0,1) (3-10a)
4-

and

var A'IHk} = N(NoTc) 2 (++2 yc 6k1) (3-10b)

respectively, where 6k1 is the Kronecker delta

6k1 = {1 . (3-10C)

Therefore, PD and PFA are related by

P Q" I " -a ATy (3-11)

with

a = 7 ; b - 4 (Synchronous coherent detector) (3-12a)

Since byc is typically much less than 1, (3-11) can be combined with (2-2) to

yield

d a a y (3-12b)
Wappr c

* '
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_%., We note that performance is dictated by the product AT yc which is typical

m of schemes employing post-detection integration. In contrast, detection of a

known waveform would involve the factor,/fNy-c (see section 3.5); the losses in

performance due to the generalized test (since the signal pattern is unknown)

for low values of SNR are evident by comparison.
0 Equation (3-11) has been plotted in Figure 3.2 for various values of

N and PFA" In terms of the overall observation time T and the null-to-null

spread-spectrum bandwidth Ws = 2T Hz, (3-12) can be rewritten to establish

the required CS/NO)req in order to achieve the performance level dappr as

0req

On the other hand, the distance dex for the exact rule (3-8) can

also be derived. Let yj = 2S" r /NO. Under HO, yJ is a zero-mean Gaussian

rv with variance y2 = 2yc. Using the fact that SIcoshcy4) = exp /2 in

4l conjunction with (3-8a) and (2-3) results in

dex = JN Lvn coshC2y3 (3-14)

For small x, En cosh(x) a x2/2, which, upon substitution in (3-14), verifies

that dex + dappr of (3-12) as yc 0. In conclusion, approximate rule (3-9)

is well suited for the low-predetection SNR range of interest.

r-

4"4

41 4
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3.2 Synchronous Noncoherent Detectors

Let us now relax the unrealistic assumption that the carrier phase of

the DS waveform is known by the interceptor, but still retain the assumption of

a known code epoch. When the observation interval is smaller than the coherence
time of the channel, the carrier phase * can be modeled as an rv, uniformly dis-
tributed in (0,2w), resulting in the aforementioned carrier-noncoherent system.

In addition, a fictitious chip-noncoherent system will be considered whereby the

phase is assumed to change randomly from chip to chip. The reason for discussing

such a totally hypothetical signal is twofold: (1) it can be shown that the

optimal decision rule for a carrier-noncoherent system is asymptotically equiva-

lent to the decision rule of the chip-noncoherent system (hence, their corre-

sponding performances also coincide asymptotically) as the SNR yc decreases to

zero; (2) more important is the fact that the performance of the chip-noncoherent

structure is easily obtained (within the Gaussian approximation), in sharp con-

trast to the unwieldy analysis of the optimal carrier-noncoherent system. Thus,

the (unobtainable) performance of the latter can be nicely bracketed between the

(obtainable) performance of the former, which serves as an asymptotically tight

* lower bound*, and the upper bounding performance of the synchronous coherent de-

tector in the previous section (3.1).

Let us first consider a carrier-noncoherent system. Under the usual

narrowband assumption w0 
>> 2w/T, the resulting decision rule is

A = exp - Nyc N Ri H1 A (3-15)
1 1 (fj- R1) H 0

where Io(-) is the zeroth-order modified Bessel function and Ri is the ith corre-

lation envelope

Ri  e 2+ 2 ; i=1,2,..., 2N (3-16)

Since a chip-noncoherent detector utilizes less statistical informa-
tion than a carrier-noncoherent detector, it is inferior to the latter for all
SNR values.

4 e
.J * . .~ -~ & '~'' SCV .- * - ~ *
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In (3-16),

N
a - ra-N i  a=I,Q (3-17)

with

bjT

r2 Crt_ fCTcr(t) 0  dt ; j=1,...,N (3-18)
Ir• FjJ (J-1)T c IS in ol

As mentioned, the optimal rule (3-15)-(3-18) is hard to mechanize.
*" Instead, suppose that the received waveform r(t) is represented under H1 by

r(t) = v2S> cj p(t-JTc)cos(wot + OjI+ n(t) (3-19)

where ¢j} is a sequence of statistically independent uniform phases, thus model-
ing the aforementioned chip-noncoherent system. It is then straightforward to

*" show (see Appendix C) that the optimal decision rule is

-N-y + N .n10 (EnI r A (3-20)

r where r. is the envelope of the jth chip

r (3-21),.. rj = j + rQ

with rijrQj as per (3-18). An implementation of (3-20) is shown in Figure 3.3.
Again, under the small-argument approximation fnIo(x) Z x2/4, it follows that

(3-20) reduces to the suboptimal rule

N
A' 32HIi A' j l< O  (3-22) .

,j=l H,
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We note that the rule (3-22) is formally identical to (3-9), the difference
being that here rj corresponds to a noncoherent chip integration.

Although the distance dex for the exact rule (3-20) can be derived

(see Section 4 for a closely related case), we shall be content with dappr of

(3-22) in view of the low-SNR conclusions of the previous section. Using the
Rayleigh Cunder HO) or Rician Cunder HI) nature of rj, it is easily shown that

(see Appendix D)

, grj21Hk = (NoTC)E + c k (3-23a)

and

varjIrjl2Hi (I OT~C)L[1+ 2yc I k1] (3-23b)

Combining (3-22) and (3-23) and employing the Gaussian assumption results in

(3-11) Cor (3-12b)D, where now

a =  1 b 2 (Synchronous chip-ncncoherent detector) (3-24)

Equivalently,

" _ dp. (3-25)

req

which reveals a loss factor of aZ, or 1.5 dB with respect to the coherent detec-

tor. This is the penalty paid for the lack of coherency. Furthermore, since

the performance of the carrier-noncoherent system is bracketed between the co-
C herent (upper bound) and the chip-noncoherent (lower bound) ones that differ by

only 1.5 dB, it is concluded that any implementational complexity beyond that

of rule (3-22) is not justified from a practical standpoint.

I
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3.3 Asynchronous Detectors V.'-

We shall now explore the possibility of removing the rather

stringent requirement of epoch synchronization. In other words, we shall

derive optimal and suboptimal structures that do not assume knowledge of
the chip epoch c Csee (3-1)); furthermore, we shall estimate the (approxi-
mate) penalty in performance compared to the previously discussed synchron-

ous detectors. For reasons which were explained before, attention will be

given to totally coherent and totally (chip) noncoherent detectors. These .-

are the chip-by-chip processors which readily render themselves to asyn- -:

chronous alternatives.

In subsection 3.3.1, Continuous-Epoch Uncertainty, we discuss struc-

tures which utilize analog filters in order to perform averaging over the con-

tinuous rv e, uniformly distributed in CO,Tc). Thus, the final system output,

which is a continuous function of time, provides, after proper sampling, the

theoretically optimal answer to the generalized (i.e., average over E) likeli-

hood ratio test for discriminating between H0 and H1. The derivation presented

here follows some basic steps from Krasner's work [4] in a somewhat more simpli-

fied and expanded manner. In subsection 3.3.2, Quantized-Epoch Uncertainty, we

explore suboptimal structures that result from a quantization of the epoch un-

certainty region and are much easier to implement than the optimal detector.
In particular, the two-point quantization scheme is discussed and analyzed in

detail. It will be argued that different interpretations of that analysis

could serve as upper and lower bounds on the performance of the optimal contin-

uous uncertainty detector in subsection 3.3.1.

3.3.1 Continuous-Epoch Uncertainty

For the sake of clarity, let us consider the coherent case first.

Most of the following steps carry over without change to the chip-noncoherent

decision rule (3-22) as well.

The starting point is tne coherent likelihood ratio (3-8a), addition-

ally conditioned on the random offset e. Following a procedure identical to

the development of section 3.1 yields the expression

N heN

ACr(t) = -I1 17shCrj(p)Dexp 'Y exp -Nyc -- coshCrj(e)) (3-26)

p.............. LC -j=
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for the aforementioned conditional likelihood ratio. In equation (3-26), rj(C)
indicates the coherent integration of the received waveform r(t) in the jth chip

interval, as per (3-7), where the integration limits have now been adjusted to

reflect the conditioning on an assumed value of the offset E:

rj(e) = J c +  r(t) dt (3-27)

(j-1)Tc+e

In the following, the constant factor expI-NYC will be denoted by KA., for sim-

plicity. Let us note that the final decision rule (3-8b) for the synchronous

*!!  case results immediately from (3-26) for e = 0 once we rewrite the latter in

the equivalent form

ACr(t)I£) = KA exp n (T coshrj(E))) KA N fn cosh(rj(£)) (3-28)A' j= A j=1

and use the monotonicity of the function exp(-). It will soon be clear that,

from an implementational viewpoint, (3-28) is more convenient to work with

than (3-26).

The overall conditional likelihood ratio ACr(t)) is formed by aver-

aging the conditional one, i.e., ACr(t)Ic), with respect to c, which is assumed

uniformly distributed in C0,TcJ:

fT csIct
ACr(t)) = J ACr(t)le) = K I exp Ien coshrj(c d.

C A f =

KA fcexp { en cosh r(fr)dc dE (3-29)
-"0 J=(j-1)Tc+e

c

Although the above decision rule is optimal from a theoretical stand-

point, it is not immediately clear exactly how it can be implemented in prac-

tice without resorting to various approximations, such as quantizing the range

of e, etc. One possible way will now be illustrated which employs appropriate

analog filters and devices.

4a;
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First, let us define the waveform y(t) as

S ft
y(t) = r( ) dr (3-30)

t-T c

The above function is easily mechanized as the output corresponding to an input

r(t) of a linear filter matched to the chip square pulse

1i 0 < t <Tc
p(t) = (3-31)

0, otherwise

* Csee (3-1)) since, indeed,

f r(T) dT f r(t) p(t-,r) dr

t-T -0
C

IIIt is clear from (3-29) that the argument of the Ln cosh(.1 function is just

the value of y(t) at time t = JT c+. Thus, we can rewrite (3-29) as

ACr(t)) = K0 cosh(y(Jr c (3-32)
0 j-l

The next step is to somehow create the summation in the exponent of (3-32) as

the outcome of a linear-filtering operation whose input is fn coshCy(t)). Such

a sum of equispaced Cby Tc) samples of the input function arises at the output

f(t), with proper sampling, of a filter whose impulse response is a sequence

of equispaced delta functions:

h(t) 1 N (t - mTc) (3-33
m=O

* (m

p
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Indeed, when the output waveform

)

f(t) =h(t) ® In coshcy(t) SC(T:-mTc I.n cosh~y(t-T))dT

= in cosh(yCt - mTc) (3-34)

m=O

* of such a filter is sampled at t = kTc+ e, it equals

N-1

f(kTc+C) N- in cosh(yC(k-m)Tc+c)) (3-35)
m=O

or, changing variables j= k-m,

* k
f(kTc+e) I In cosh(y(Tc+c)) (3-36)

j=k-N+l

Clearly, then, the exponent of (3-32) arises exactly when k-N, i.e., when f(t)

is sampled at t = NTc+C.

Before proceeding, let us note that an impulse response as per (3-33)

corresponds to a tapped-delay-line filter whose (N-i) delay elements are Tc sec-

onds each (see Figure 3.4(a)). Such an implementation, however, bears the re-

striction that it is not recursive, i.e., higher values of N require more delay

elements. An alternative structure is shown in Figure 3.4(b) which employs a

single delay element in the feedback path. Ideally, such a filter would provide

an infinite series of delta functions, thus alleviating the need to specify N.

Typically, however, stability considerations dictate the insertion of a gain

a < 1 in the feedback loop; the available maximum N is then practically restric-

ted .y the infinte-impulse-response (IIR) filter memory.

Returning to (3-36) and combining it with (3-32), one recognizes that

the desired likelihood ratio statistic is, in fact, the time average of the

function exp{f(t)) over the interval [NTc,(N+1)Tc]. Again, such an average is

( L .1
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created by sampling at t = (N+1)T the output of a filter whose impulse

* response is a unit pulse, Tc seconds long. Figure 3.5 provides a possible im-

plementation of such a "moving-average" filter. Finally, the detector compares

the output sample at t = (N+1)T to a threshold and produces a decision. The
C

overall scheme is depicted in Figure 3.6.

* Several observations can be made here. First, a practical scheme

would avoid the In cosh(e) and exp() nonlinearities since they are hard to

construct and replace them by a single square-law device operating on y(t),

i.e., the following approximation of (3-32) could be used:

A~r(t)) zKAyCT+)d (3-37)0 C~

The basis for such a simplification is the previously used fact that, for low

SNR, y(t) is a small quantity; in which case, the approximations In cosh y(t)

1 + y2 (t) and expCf(t)) z 1 + f(t) can be employed. Furthermore, let us note

that the chip pulse shape need not be rectangular. An arbitrary (but chip-time

* limited) shape can be accommodated by designing the very first filter of Fig-

ure 3.6 to be matched to that particular shape. All other elements remain the

same.

IFinally, it can be shown that the arguments and detector structures

*! of this subsection apply directly to the chip-noncoherent case, provided that

.* the first nonlinearity In cosh(-) of Figure 3.6 is replaced by In Io() and

the initial chip-matched filtering at the input of that figure is done nonco-

. herently. This can be accomplished by the noncoherent chip-envelope detector

comprising the predetection integration of Figure 3.3, once the inphase and

quadrature integrate-and-sample type filters are replaced by analog matched

filters with a continuous-time output.

SC 3.3.2 Quantized-Epoch Uncertainty

A step towards reducing the complexity of the previous detector is

to quantize the epoch uncertainty region of Tc seconds into a (small) finite

number of alternatives, i.e., points. This is equivalent to assuming that the

4' epoch rv can take on only those values and accordingly develop the optimal or

near-optimal detector for the resulting finite hypothesis problem. The quality

IV
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(as well as the complexity) of such an approximation will obviously increase

* with the number of points considered. It will soon be clear, however, that the

simplest case of only a two-point quantization, which will be the one we analyze

herein, provides quite an adequate performance with respect to the ideal (syn-

chronous) detector; thus, higher level quantization and complexity might even be

* undesirable from a practical viewpoint. In addition, a suitable interpretation

of this analysis can simultaneously serve as a bounding technique (upper and

lower) for the optimal, continuous-epoch uncertainty detector of the previous

subsection, whose exact analysis is intractable.

4l Let us assume that the two points comprising the epoch uncertainty*

are co and E1/2, corresponding to the offsets c=0 and c= 1/2 in (3-1). That

is to say, the incoming code chips are likely to arrive either in perfect syn-

chronization (t = 0) or half a chip off (e= 1/2) with respect to the local chip

timing reference, and they are both equally probable to occur. A variation of

the optimal-likelihood ratio (3-28) for the coherent case, adapted for the above

scenario, would imply that the decision rule should be

exp n cosh (rj (co)) + exp en cosh(rj (-1/2))exp-NYc ' Ao (3-38)(1 . J - -1 l He
%I

where

rjCFo = T r(')dT ; r &1/2) " r(T)dr (3-39)
(j-1)T c  (J-1)Tc+Tc/Z

C C

Clearly, the chip-noncoherent detector would form the envelopes rj in place of

the coherent integrations (3-39); otherwise, the development is analogous.

We should note here that the two NTc-second observation intervals for

" C the two corresponding exponential terms of (3-38) are slightly off by half a

chip. For large N, such "edge effects" are insignificant and will be neglected

in the following t .

So, at this point, the epoch uncertainty is assumed to be discrete

by nature, not by quantization.

tFor that purpose, small adjustments will be made for convenience
without explicit acknowledgement.
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The familiar small SNR approximation applied to (3-38) yields the
*g suboptimal rule:

N 2N H1
A' r (O) + rj 2(C112 )z AO' (3-40)

j -1 jul H0

.i".
Let rjl and rj2 indicate the coherent integrations during the first and second

halves of the jth chip interval, respectively, i.e.,4-
= f(J-1/2)T c rj~d = / c r'r(-1

rjI2T r( d-r r r r d- (3-41)
rjl = rj2 f

(j-I)Tc  (j-I/2)Tc

Then (3-40) can be rewritten in terms of (3-41) as

N 2 N 2 H1
rA' (rjl+ r + r1) A' (3-42a)

= ( J+r2) 1 (J2 H 0j11jwl j= H 0

or, expanding terms, neglecting edge effects i.e., substituting rN+1, with
r I), and dividing by 1/2, we get H1

- 2 2 Hi0As I,= rj1 + r + r r.+ r ) AO  (-4bl 2 r2 r j l l A. H(3-42b)

Figure 3.7 shows a possible implementation of rule (3-42).
An examination of the decision rule (3-42b) reveals the source ofinferiority of the asynchronous coherent detector in comparison with its syn-

chronous counterpart, namely, rule (3-9). The latter rule can be obtained
At from (3-42b) if the factor rJ+, I in the last term is substituted by rjl be-
' cause the resulting expression is then the perfect square (rj1+r2 2 = rj2 of

(3-9). Since rj and rj+ 1,1 are independent rv's (they belong to different
random chips) regardless of the true epoch value, it follows that such a sub-
stitution would increase the mean of the decision statistic A' under HI and
slightly reduce the variance--the effect of which is a net improvement in per-
formance for the synchronous detector. We will now take a closer look at the

performance of (3-42b).

:€ : _ . : - , ,- ,,.,,,., - - ,, Fyrw ,, .'-w.¢ ;o¢,. .:K. ::,;.
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4 Without any loss in generality, we can assume that the true epoch is
• -0. The symmetry of the problem suggests that the results to be derived under

such conditioning also represent the unconditional (average) performance in this

two-possible-value case. In order to pursue the familiar Gaussian type of anal-
ysis, one needs the means and variances of the rv's rj and rj as per (3-41).

* Those are readily calculated 
to be

NOTc' jm~ Hk - [1 + Yc~
S.24 

c kl ; m=1,2
;-=~ (3-43)

var rjm2IHk - (NOTc)24  1 + c ki]

Furthermore, it is easily shown that (See Appendix E)

*'I ST 2

1'{rj 2 rj+1,1IHk;=O} = 0 ; J(rjl rj2(Hk;=O -  S c 2k1 (3-44)
k k4

for k=0,l. Combining (3-42b), (3-43) and (3-44), it follows that

ffAhIHk~=. NNO) i'ck] (3-45)

A complete evaluation of system performance would require an addi-
tional calculation of the variance varA'Hk as was done for the decision-. va{'~~, a oefrtedcso

statistic (3-9). However, matters can be simplified considerably if we observe

that the result for the asynchronous variance should be higher than, but close

.-. to, the synchronous variance of section 3.1, particularly for the low SNR range

- of interest. The main rationale supporting such an assessment is the compari-

son between the asynchronous rule (3-42b) and the expanded synchronous rule

pN
N 2 r r r

(3-9)<--* 1 rj2 + r + jj j (3-9')
3=1 i j2 j2 j2



32j

which shows them differing in only one of four contributing terms. Thus, a

variance equal to N(NOTc)2/2 Csee (3-10b)) is a good approximation for all

cases.
It follows from the above discussion and the underlying Gaussian as-

sumption that the primary measure of performance degradation due to asynchronism

is the reduction in the difference (distance) between the means of the two dis-

tributions corresponding to the alternative hypotheses. So, if we rewrite the
410 synchronous expression of (3-1Oa) as 1A! IHk }= NCNOTc)[1 + 2 Yc k /2 and

compare it to (3-45), we induce a loss factor of 4/3, or 1.25 dB, as the SNR

penalty associated with the aforementioned asynchronous detector.

The above estimated loss can also be viewed as a lower bound on the

performance losses of the continous-epoch uncertainty detector. This is be-

cause the two-point-uncertainty coherent detector discussed so far assumes a

random epoch that can take on only two values; thus, it faces less uncertainty

than any other multipoint or continuous type of epoch randomness. Therefore,

it is bound to outperform any other asynchronous detector, including the

continuous-uncertainty one.

It is also of interest here to derive an upper bound on the perfor-

mance losses of the continuous-uncertainty detector. This can be done by assum-

ing a truly continuous-epoch uncertainty and viewing the two-point detector as

a suboptimal quantized implementation of the optimal continuous-uncertainty one.

The performance losses of the suboptimal detector under a worst-case choice of

the unquantized epoch will then clearly upperbound the losses of any other,

higher complexity, multipoint or continuous detector.

Some reflection could persuade us that the worst epoch for the two-

point quantized detector is the one straddling between £ - 0 and £ - 1/2 , namely,
e = 1/4 (or, equivalently, e = 3/4, whose performance, however, is identical).

This is because, under H1, rjl will then have the lowest possible mean (namely,

zero) half of the time while rj2 remains unaffected. Any other offset will yield

a higher overall average for rjl, thus improving performance.

It is shown in Appendix F that, under the worst epoch e * 1/4, the

joint statistics of rjl and rj2 become

..
' T CT \Y;% ( '. . .. , i :', } ;°, :,V~i '¢ , .. ,. ,Q: ?..',. .', . . .. .. ......... ... -,a.
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4 jrj Hk;E=1/4 = + Yckli[

9 r Hk =l 4 + Y c6k-.

eIrjrjlHk;C=l/ 41 S rj2 rj+l,lIHk;e=l/ 4  = 1 (3-46)

which, when substituted in (3-42b), yields

4r)AIHk;e=1/4f = N*) + Yc 6 k1I (3-47)

A comparison of (3-47) with (3-10a) reveals a loss factor of 8/5, or 2 dB, with

respect to the synchronous structure.

In conclusion, the lack of synchronism in the coherent detector costs

anywhere from 1.25 dB (lower bound) to 2 dB (upper bound). Tighter bounds can

be obtained by reiterating the above arguments for epoch-quantized detectors

with more than two quantization points. As the number of points increases, one

asymptotically converges to the actual performance of the continuous-epoch de-

tector. In any case, a rough figure of an average 1.5-dB loss due to asynchron-
ism should not be far from exact. Similar conclusions can be drawn for the

noncoherent detectors of the previous sections.

i. -.
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* - - .w - '- U . -.4,



34

3.4 Energy Detector (Radiometer)

0 The most commonly used energy measuring device, the "energy detector"

or "radiometer", will now be analyzed as a potential candidate LPI detector.

In the battle for implementational savings and hardware reduction, the radiom-

eter is an easy winner: it is simply the cascade of a wide bandpass filter,

followed by a square-law device, a zonal LPF (possibly excluded), an integrator* O

and, finally, a threshold comparator which produces the decision, as shown in

Figure 3.8. The bandwidth of the BP filter should approximately cover the null-

to-null bandwidth of the DS spread signal to be detected; thus, approximate

knowledge of the chip rate is an implicit necessity.

Clearly, the hypothesis discriminating power of the radiometer is

based on simple energy considerations: signal plus noise Cunder HI) should '! .

possess more energy than noise alone Cunder HO). Thus, by properly adjusting

the decision threshold, a correct decision will, hopefully, be made. It goes

without saying that performance, as measured by the pair CPDPFA), increases
monotonically with increasing SNR yc and observation time T=NT c . On the otherc c
hand, selection of the RF bandwidth WBP in the filter is subject to optimiza-
tion and is discussed more thoroughly in the following.

It has long been known that the precise analysis of systems contain-

ing linear plus nonlinear elements, as in Figure 3.8 for arbitrary filter shapes

and bandwidths, is generally unwieldy [11]. If the envelope detector of Figure

3.8 is assimilated to (or approximated by) an inphase-and-quadrature (I-Q) type •

of envelope detector, it can then be claimed that the output statistic A has a

chi-squared distribution (central or noncentral, depending on whether a signal

is absent or present, respectively), with 2NWBPTc degrees of freedom. The prob-

abilities PFA and PD can then be calculated by a numerical integration of the

corresponding densities, from the threshold A0 to infinity, since those inte-

grals cannot be found in closed form. This procedure can be very laborious.

Fortunately, when the time-bandwidth product WBpCNTc) is large (which is the

case here, since N is large), one can very accurately approximate the proba-

bility densities of A under both hypotheses by Gaussian ones, by virtue of a

central-limit-type argument. Then calculation of the overall performance be-

comes fairly straightforward.

0
Since the integrator itself acts as a lowpass filter, the zonal LPF

preceding it is typically eliminated; it is included here as a conceptual aid.

4 0
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The received waveform r(t) is described by (3-2). The BPF is assumed

* to be rectangular with bandwidth WBp. The output of the BPF in Figure 3.8 is

rBP(t) = /23?(t) cosCwot + ) + nBp(t) (3-48)

where nBP(t) is filtered AGN with the typical BP representation

nBp(t) = /T§nl(t) cos 0t + nQ(t) sin woti (3-49)

In (3-49),nl(t) and nQ(t) are approximately independent, zero-mean, jointly

Gaussian, lowpass noise processes, each with a PSD of N0 W/Hz (one-sided) and

bandwidth of WBP/2 Hz (one-sided). The code signal, filtered by the BPF, is

designated Ft) in (3-48). The zonal LPF (shown for analytical purposes only)

... rejects the 2f0 components of the square-law output z(t) and has an output

given by

U) zLP(t) = S(2(t)) 2 + n1
2 (t) + nQ2 (t) + 2VTF(t) nl(t) (3-50)

In order to maintain analytical tractability, we approximate and model

Z(t) as an attenuated, but undistorted, version of c(t), namely,

F(t) a c(t) (3-51)

where the "attenuation factor" 2 measures the (normalized) power reduction due

to filtering:

2. JHL(f) 2 Sc(f)df WBpTc/2 2

Sc(fdf= '-~)dx (3.52)

since, for a *i-valued code, the denominator of (3-52) equals c(t) = .
I' In the previous expression, S c(f) is the PSD of the random code signal c(t)

and H (f) is the lowpass equivalent of the BPF HBp(t), i.e.,
L B

'4o

*

,'% .. ~%~ 4
- =n ! * '.
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SHL1(f) 1 If < W~p/2
(0 otherwise

By suitably adjusting HL(f), (3-52) can be generalized to filters other than the

perfectly rectangular one considered above.

From the above definitions, it follows that Ct(t))2 _ 02 . Thus,

= 2 +n2,.+
zLP t) S + nlI(t) + nQ(t) + 2/fac(t) ni(t) (3-53)

under HI. Under the alternative H0 , zLP(t) is given by the above expression

with S = 0. It follows that

*,zLP(t) H k = J 2S 6kl + N0 WBp; k-0,1 (3-54)

- with 6k as per (3-10c). Thus, the expected value O AIHk of test statistic A

* at the output of the integrator in Figure 3.8 can be calculated under either

hypothesis Hk;k=O,l, as

* drAIHkJ TJzLp(t) Hk dt = NTc oWBp + JSQ; kuOl (3-55)

0

The next step is to obtain the second-order statistics of zLP(t) and

A. The typical approach, based on the assumption WBpNTc > 1, is to model

* zLp(t) as a very wideband ("delta-correlated") process with respect to the ap-

proximate bandwidth CNTc)'1 of the integrator. Thus, one needs to evaluate only

the PSD of zLP(t) at the origin f - 0, distinguishing between the average (con-

stant) contribution and the random contribution. Using the fact that ni(t) and

nQ(t) are Gaussian, the autocorrelation function r4 zLP(t) can be obtained di-
rectly; from that, its PSD under H1 is given by

SzLp(f) = (2s + NoWBp) a(f) + 4SnI(f) ® SnQ(f) + 4a2 SSc(f) ® Snl(f) (3-56)

where ®means "convolved with." The coefficient of the Dirac delta function

8(f) agrees with the first-order statistics of zLP(t) obtained directly in
(3-54). The two-sided PSD of zLp(t) at f - 0 measures its random contribution
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and is obtained by evaluating the last two terms of SzLP(f) in (3-56) with f-0,

* resulting in

2 + 4 N
SZLP(f) I  * N0  W a 6k, ; k-O,l (3-57)

The delta-correlated random part of zLp(t) contributes to the variance of A as

var{AIHk} = (NTc)SzLP(0) (NTc)(No2WBp + 2a4 SNO 6k1) (3-58)

The mean and variance of A in (3-55) and (3-58) suffice to characterize perfor-
mance under the Gaussian assumption which hinges on the fact that WNPNTc - N>> 1.

44

.' The result is (3-11) with

"1 2
a = r T ; b 2a (3-59)

YBP c

Clearly, the choice of WBp has an impact on a through (3-59) and a in (3-52).

The quantity

2 ( ) W T  (sinx)2 dx

a = 0 (3-60)

" has been plotted in Figure 3.9 as a function of the product WBpTc . The max-

imum amax 0.77 is attained at W pTc * 1. This corresponds to a minimum SNR

loss of 1.1 dB with respect to the chip noncoherent detector (3-24). Since

the above conclusions are based strictly on energy considerations and the inter-

chip interference effects due to filtering have not been taken into account,

the actual losses are somewhat higher. In the following comparisons, we select

a nominal loss figure of -1.5 dB. We note that the above losses pertain to a
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rectangular BPF; other filter shapes will result in different loss figures,

* typically of the same order. For example, (10) can be consulted for the effect

* of filtering on a baseband rectangular pulse in terms of output SNR losses,
4.

* compared to a matched filter.
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3.5 Comparisons and Discussion

All the previous theory was developed under the cardinal assumption

that the received waveform r(t), on which the decision is based, is of the form

(3-2). Excluding the fact that the spreading is done via DS methods (alterna-

tives such as frequency and time hopping will be studied In the sequel), three

key restrictions in the system modeling were applied: (a) under H, the whole

observation interval (O,T) is occupied by the spread waveform, (b) there is on-

ly one version of signal plus noise available, and (c) the additive disturbance

is white Gaussian noise. Let us now comment on each of these restrictions.

Assumption (a) is not as restrictive as it might seem at first. Ad-

mittedly, if the starting signal transmission time is unknown, the intercepting

receiver will be forced to look at T-second observation intervals that are ran-

domly placed with respect to the actual transmission time. One could develop

a theory along lines similar to those presented herein, whereby the performance

losses due to such realistic randomness are taken into account. Although the

performance of each individual suggested system will certainly be altered, their

relative ranking in terms of effectiveness is expected to remain the same. Thus,

the conclusions and comparisons which we shall soon undertake should carry over

more or less intact. In order to be definite, however, one should take a closer

look in the future*.

Assumption (b) is more substantial in nature. In fact, it will now

be shown that performance improvement can be gained by utilizing two receptions

which cover the same geographical area (hence, contain the same useful signal),

but possess independent RF circuits (hence, independent thermal noise compon-

ents). In order to briefly illustrate the idea, let us consider a synchronous

coherent system.

Let

r1(t) - rSc(t) 6k1+ n(t) (0 t T) (3-61)

r2(t) = c(t) Skl + n2(t) k=O,1 3

represent the two receptions. Here the two noise processes n (t);m-1,2 arem
Gaussian and independent, while the signal component c(t) is the same in both

One could create a multitude of possible solutions, such as over-
lapping versus nonoverlapping observation intervals, etc.

.-a
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10l waveforms. We should point out that, when implementing the cross-correlation

which we are about to discuss, maximum care must be exercised to ensure that

the two code signal components are indeed in phase since timing offsets of more

than a code chip will result in involuntary signal spreading and total loss of

q* detection capability.

The decision rule adopted here is a simple correlation (see Figure 3,10)

V
c 1 NT N NJ

A' - N r1(t) r (t)dt = r.(I) rj(2) > (3-62a)
0( j1 HO 0

where

rj (M ) = rm(t) dt (3-62b)

0-1
2. (()-(2

0 We note that (3-62) is analogous to (3-9) once r.2 is substituted by rj (1).rj (2)
Clearly, in the absence of thermal noise, both (3-9) and (3-62) produce the same

quantity, NST c2; however, performance is different in noise. Indeed, from (3-26),

-' it easily follows that (see Appendix G):

01 ,AIN k N(NOTC yc 'k1 (3-63a)

and

varjA'IHk( = N(NOTc) 2 L+ jc 2k1j (3-63b)

The resulting performance is again described by (3-11), where now

4 C

a =3 2 ; (Two independent receptions) (3-64)

Thus, a comparison with the corresponding performance parameters (3-12a) for

the (one-reception) synchronous coherent radiometer reveals a gain factor of

V2, or 1.5 dB in SNR for the present system. However, we would again like to

emphasize that this gain is attained at the cost of higher complexity.
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Before commenting on the third assumption (c), let us attempt an
evaluation of the relative merits of all the previous detector structures.

The conclusions have been summarized in Figure 3.11 for the exemplary case of

PFA 2 10-2 and N = 1000 chips. Clearly, the ultimate upper bound in performance

corresponds to the ideal (but unrealistic, from the LPI viewpoint) case of a
V totally known signal Cunder HI), i.e., a code-matched receiver. Since it is an

unachievable upper bound, it has been included merely to serve as a comparative
yardstick. It is represented by curve (D , whose analytical description is via

the distance dUB Cas per (2-2)):

dUB = (3-65)

where a coherent system has been assumed. Comparing (3-65) with (3-12b) implies
I that there is a loss factor of associated with the lack of code knowledge,

-. and this factor is significant at low SNR's. On the other hand, all performances
%I

are lower bounded by that of the radiometer, which was derived in the previous

- subsection Csee (3-59)) and is represented by curve 9 in Figure 3.11. The re-

maining curves 0, (3 and ® pertain to alternate receivers which were consid-

ered herein: 0 corresponds to a detector utilizing two independent, synchron-

ous, coherent receptions, (M to one synchronous, coherent detector, and O to

a synchronous, chip-noncoherent detector. The difference between 0 and a is

roughly 1.5 dB which is also the difference between G and ®, as well as®

and G). It follows that, under fairly ideal conditions, i.e., two independent

* synchronous coherent receptions, one could utilize up to 4.5 or 5 dB gain above

the radiometer; each of the added features (i.e., two receptions, synchronism

I and coherency) can be thought of as contributing 1.5 dB to the gain. We note

that, in arriving at these gain figures, system imperfections and noncalibrated

parameters such as doppler frequency offset have not been accounted for.

In conclusion, it is seen that certain gains are plausible with re-
C(" spect to the radiometer if careful designs are employed, but they are certainly

not overwhelming--at least in the SNR range of interest. This is because a

high-rate DS waveform is not very distinguishable from the background thermal

AWG noise in which it is detected and, as is well known, the radiometer then

j'7 becomes an asymptotically optimal detector. This is also in accordance with

Krasner's approximate result regarding biorthogonal waveforms ([6, eq. (29)).

.o

, . % ~ ~ ~ % .. % ~ % ~ ~ *.~



45

%. 0. 999
0.998

0. 995 .

0.99 I

0.98
PFA = 10 2

0.95 N = 1000

4JJ0. 90

U0.80

- 0.70 1 2

0.60
-r3

0.50
. 40
i. 0.40
0.

0.30 5
0.

0.20

0.10

0.5

0.2 PFA

0.1

-40 -30 -20 -10 -5
A

YC= Ec/No - dB

1. Completely known waveform
2. Two independent receptions, synchronous coherent detector
3. Synchronous coherent energy detector
4. Synchronous chip-noncoherent energy detector
5. Radiometer

Figure 3.11. Performance Comparisons for the Detection of DS Waveforms
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However, if one removes the biorthogonality of the signal set and/or

* the AWG nature of the noise, the results can differ substantially. One illus-

tration of the former case can be found in the following section regarding time

hopping. Furthermore, if one removes assumption (c) about the white Gaussian

nature of the noise, i.e., if some colored interference is superimposed on the

thermal background noise, a whole new class of (mostly) open problems is gener-

ated. Tackling such problems from a theoretically optimal standpoint would be

a much more complicated task in general than that which has been performed up

to now for AWGN; nonetheless, the benefits derived from applying certain sub-

optimal solutions (which are, however, more sophisticated than the radiom-

eter) could be signficant. One particular case of detecting DS waveforms in

*. random-tone interference--and in the absence of thermal noise--is treated in

* section 5.2, wherein* it is shown that the application of real-time auto-

correlation techniques can bring about impressive gains with respect to the

radiometer. Although this is a rather ad-hoc technique and the hypothesized

scenario is not the most general one, it still serves as a good motivating

example of how benefical an extra degree of sophistication can be when the

9I problem formulation and conditions vary.

%;h

*Although the development there formally pertains to a FH/DS hybrid

system, it essentially addresses DS waveforms since it is concerned with the
signal processing on a per-band (single hopping slot) basis.

Jq iA



'.
IT"R

4.0 DETECTION OF TIME-HOPPING WAVEFORMS

We now focus on the wideband detection of TH waveforms, where the code

. dictating the hopping is again assumed random. We shall consider only synchronous

detectors (i.e., the timing or epoch of the hopping slot will be assumed known);

to asynchronism can be treated with methods similar to those used in section 3.3.

Furthermore, both carrier-coherent and carrier-noncoherent systems will be exam-

ined. In particular, the former will assume a known carrier phase combined with

a pulse-position-modulation (PPM) format while, for the latter, any modulation

that randomizes the phase from frame to frame (e.g., BPSK) is well suited. We

term such cases "pulse noncoherent." Clearly, one could hypothesize a nonco-
herent PPM system with an unknown constant carrier phase and derive the optimal

detection rule. However, the resulting receiver and pertinent analysis are much

too complicated (for a similar situation, refer to section 3.2 for DS); there-

fore, only pulse-noncoherent systems will be discussed here. Again, the lower-
bounding performance of the radiometer will indicate that very little is lost

* by using this simplification.

lp For our purposes, the received waveforms (TH signal plus noise) can

be written as

r(t) = p(t - kTF- PkTH)cos(wOt + ek) + n(t) (4-1)' W k=- -  .

where TF is the frame length, TH is the hop length (width of each time slot), and

-. pkk are random variables that are independent from frame to frame* and of each
other, denoting the slot location and carrier phase, respectively, during the kth

frame. Here, Pk can take on any one of the equiprobable values pkO...,NF-,

where NF 4 TF/TH is the total number of slots per frame and ek summarizes both

*. the unmodulated carrier phase f plus any superimposed PSK modulation. For coher-

ent systems, ek is assumed known for every k. Finally, p(t) is a unit pulse of

duration TH seconds, while n(t) is the usual bandpass AWGN. A noiseless sample

"" waveform (realization) of the TH signal is shown in Figure 4.1. We shall assume

that the total observation interval consists of Q frames, i.e., T n QTF = QNFTH -

The independence of ek is within the aforementioned spirit of a0 "pulse-noncoherent" system.

0 f

~2P
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4.1 Synchronous Coherent Detectors

Under the coherent assumption, "I" is substituted for vY cosCwot+ek)

in (4-1). Then a straightforward application of the generalized likelihoood

ratio yields

ACr(t)) = I k xp r rk4 A (4-2)

N 00

where

A ST H
-YH 
=  N (4-3)

0

is the SNR per time hop (slot) and

rm = (m-l)TF+kTH r(t) pCt kTH~dt (4-4)
rkm f (4

(m-l)TF+(k-I)TH

is the integral of r(t) in the kth slot of the mth frame. If is a small num-

ber, so that exp{x} = 1+x, (4-2) can be simplified to the approximate

A'Cr(t)) , r(t)dt K A' (4-5)

i.e., just the coherent integral of r(t). However, since Y"H is typically above

0 dB Cmuch larger than y3J, such approximations are not as successful as In the

DS case--a fact to which the comparisons in section 4.3 will attest.

The distance dcoh for the coherent rule (4-2) can be derived based on

(2-3) and the following steps, as in [3]:

d2 _ In 9{A2JHo} - Q I~n 9JAF.21Ho} (4-6) ":

coh .(

where AF is the likelihood ratio per frame. But,

• "p
I ' 4.
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, An 2 JAHoJ ft + var - 1 exp 24 rk
L H0  km ,I.

exp- ar exp rkm= fn + I var epo 2

= fn + e (exPj4TH - exp{2YH} (4-7)

since rkm is a zero-mean Gaussian random variable (rv) under HO. Combining

(4-6) and (4-7) results in

dcoh = Q n + 1(eY H - 1)] (4-8)

The distance dcoh,appr for the approximate rule (4-5) is derived much easier

since

SJ= A'Q TH 'k1 ; k = 0,1 (4-ga)

and

var A 'H0} =(NFQT N (4-9b)

Therefore,

dcoh,appr *I arJ, Ho} (4-10)

% It is clear from (4-8) and (4-10) that dcoh asymptotically approaches dcohappr
4CG as YH -- 0, an expected result. Furthermore, we can compare the approximate

coherent rules (3-9) for DS versus (4-5) for TH and note that the first involves

a nonlinear operation on the data prior to integration, while the second does

.Pnot. This has a-reflection on their corresponding distances as (3-12b) is di-
I' rectly proportional to yc' while (4-10) is proportional toFiH. Thus, for the

very low SNR-case, the latter would outperform the former; therefore, TH is a

more detectable waveform than DS.

• , .. ...... . ... ;..: .. .? .....::.'......; ... :..?:.?.?.; : ..'...i.'c. ,?.;..x ° '. .t x'. ' ' ;7 ; 'w' '' .. :U
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4.2 Synchronous-Noncoherent Detectors

Starting from (4-1) and invoking the independeat phase assumption
results in the decision rule

ep N FH
* I 10 / k A (4-11)

Ma m1( F k=1 /)Ho 0

where R is the kth slot, mth frame envelope

km ek + e

Rk =k (4-12d)

and

eqlkm f 2 r(t) S dt (4-12b)
Qm]m 2 (m-l)TF+(k-l)TH Iin w1]

* k-1,...,NF ; m=l,...,Q

The distance dnoncoh associated with (4-11) is derived by steps identical to

(4-7) as
S

dnoncoh = Q n[I+iF(Io(2YH - (413)

Since lo(x) < exp{x) for every x > 0, it follows from the comparison of (4-8)

- and (4-13) that dcoh > dnoncoh for every YH' as expected.

Instead of analyzing the noncoherent rule which approximates (4-1i)

for low SNR, let us consider only the performance of the radiometer that oper-
"C( ates on the time-hopped waveform (4-1) for TH seconds. Following the steps

outlined in section 3.4, it can be shown that

d rad a Krad .YH (4-14)

where the constant Krad 0 &%'/WBp TH again measures the loss due to filtering.

e

* :- Si ~
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As in section 3.4, Krad can be set at its optimal value Krad * (0.77)2 * 0.6.

We should note here that (4-14) is actually an optimistic prediction (i.e.,

an upper bound) of the radiometer's performance since it is based on the assump-

tion that the variance of the test statistic under H1 is approximately the same

as under H0. For medium-to-high YH' this is not true (unlike the DS case where

it is justified by the low values of yc). Although a more meaningful perfor-

mance description can easily be derived*, we shall be content with (4-14) for

comparison purposes.

* _I

It will consist of a pair of equations similar to (3-11) and (3-59)

under an appropriate interpretation of the parameters involved.
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4.3 Comparisons and Discussion .

First, we are interested in comparing the relative loss of the approx-

imate coherent rule (4-5) versus the exact (4-2) since the former can be imple-

mented trivially (a simple integrator) in contrast to the significant complex-

ity of the latter. The comparison is in terms of the relative SNR values YH

(in dB) required by each in order to achieve the same performance level (d2 )

for Lhe same fixed values of Q and NF. It is based on (4-8) and (4-10) and is ;,

shown in Figure 4.2 CNF - 10). As expected, the difference diminishes at low '>4

SNR, but is rather pronounced at medium-to-high SNR. So, Ycoh - 0 dB corre-
coh,appr . H coh icess

sponds to YH = 3.9 dB--a gap that increases rapidly as Y H increases.

Second, we look at the gains brought about by the coherent assumption

versus the noncoherent by comparing the "exact" distances in (4-8) and (4-13).

The result, again in terms of the required SNR's for the same performance level,

is shown in Figure 4.3. The difference here diminishes as SNR increases, while

it can be substantial at low SNR. The final comparison is between the noncoher-

ent "exact" performance (4-13) (or its equivalent log-likelihood sum) versus

the radiometer performance estimate (4-14). It is shown in Figure 4.4 for

Krad = 0.6 and M F = 10. The irreducible distance of 1.1 dB as the SNR goes to

zero is due to the Kr d factor*. Again, we should keep in mind that the actual

SNR losses of the radiometer are higher than those shown in Figure 4.4 by an ,.

amount that increases with SNR due to previously discussed reasons. Furthermore, '

a common trend is evident from Figures 4.2 and 4.4, namely, that the simplify-

ing deviations from the optimal decision rules incur comparative losses that

increase fairly rapidly with the available hop SNR for values of YH above

2 - 3 dB. Since this is the dominant range of importance in TH applications,

optimal devices (albeit complex) should attract due attention.

However, this margin will probably disappear if the loss due to
asynchronism is accounted for in an asynchronous, noncoherent, optimal detector.

•0
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.4,5.0 DETECTION OF FREQUENCY-HOPPING SIGNALS
* USING AUTOCORRELAT ION TECHNIQUES

We shall now focus on the detection of FH or FH/DS waveforms embedded

in different forms of additive interference. The two particular cases of inter-

est are: (1) FH signals in AWGN (section 5.1) and, (2) FH/DS signals in random-

tone interference (section 5.2). Although optimal detectors can be derived--at

least for case (l)--following the guidelines of Sections 3 and 4, those will not

receive any in-depth treatment here because their exact implementation is usually

hampered by excessive complexity. Instead, we shall deal with improved suboptimal

l wideband detection procedures, such as real-time autocorrelation-domain algorithms.

Our approach has been motivated by recent advances in the technology of real-time

autocorrelation and convolution devices with large time-bandwidth products [12,

13). The rationale for introducing such techniques in the context of wideband

detection is explained herein.

Let s(t) be the frequency-hopped signal to be detected Cunder HIO in
AWGN within a total spread bandwidth of Ws Hz. If RH A TH- 1 is the hopping rate
and the hopping frequencies are contiguous and equispaced by the minimum nonco-

* herent orthogonal separation Af = RH, it follows that the total number M of pos-

sible hopping locations is M = Ws/RH = WsTH--typically, a very large number. If

, the total observation time T is for NT hops, i.e., T = NTTH, it can then be shown
under suitable assumptions that the log likelihood ratio reduces to

NT ( 2SV R A (5-1)n m=1 H 
n~l H0

where Rnm is the envelope output, at the end of the nth hopping interval, of

the matched filter centered around the mth hopping frequency (spectral slot),

W-() is the zeroth-order Bessel function, and S,N0 are the signal power and
one-sided noise power spectral density (PSO), respectively. Equation (5-1)

is the dual to (4-11) for the TH case; it thus follows that performance is

quantified by the "exact" distance

IC( dex = NT jn +k (IOC2YH) - I)] (5-2)

eR
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where YH is the hop SNR
9/

STH ..

= - (5-3)

analogous to (4-13).

The most inconvenient aspect of the optimal rule (5-1) is perhaps

its complexity: whether implemented as a bank of matched channels or via an

FFT Cwhich would simultaneously provide all the spectral estimates Rnm,m-l,

...,M for each hopping time), the resulting complexity, measured by the number

of required filters, can be enormous. One way of alleviating the problem is

shown in Figure 5.1: the total bandwidth Ws is subdivided into large contig-

uous segments of B Hz, each being much larger than the optimal bandwidth of

RH Hz. Appropriate processing produces a per-band decision which is then fed

into an overall accumulator (e.g., a majority-logic combiner) for a final de-

cision (N1 versus HO). Let us note that alternate reduced configurations have

also appeared in the literature [4,5], such as the partial-band filter-bank
combiner. There, only a fraction of the total number M of the hopping slots

is oeing observed, but the observatioi bandwidth per slot is optimal ( = RH).

A comparison between alternatives has not yet been performed.

The focus of this section is the waveform-processing (WP) aspect on

a per-band basis. Clearly, algorithms improving performance on that level will -.

also increase the overall system performance. We shall assume throughout this

development that the time-bandwidth product

G G 0 B TH = B/RH>> (5-4)

is very large, i.e., of the order of hundreds. The factor G also measures the

order of the reduction in complexity when implementing the suboptimal structure I
of Figure 5.1 instead of the optimal. As a consequence, the input SNR per band,

Yin' defined as

Yin N B (5-5)

is typically very small compared to unity CYin << 1).

."Nm
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Two questions irise immediately:

(1) Into how many bands should the spectrum be divided?

(2) What kinds of WP alternatives are available or could be used?

With respect to (1), it is intuitively clear that one should use as
many bands as the number of devices which can be affor. ed since, by decreasing

B and thus increasing Yin from (5-5), more reliable decisions on a per-band ba-

sis can be achieved; an elaborate cost-versus-payoff study is of significant

interest in this area, but will not be pursued here. As for the second question,

4b we note that the device which immediately comes to mind is the familiar radiom-

eter, designed to measure energy in the band of B Hz, as shown in Figure 5.2.

Under the Gaussian assumption for the output decision statistic Y (which is

well justified for very large G via a central-limit-type argument), its per-
qformance is easily derived to be

drad '_ Q 1[PFA] Q Q'JjD] = (5-6a)

* where

SNRout SNRrad 2= G_1  2- out G'Yin YH (5-6b)

Note that the second equality in (5-6b) signifies the small signal suppression

effect of square-law detectors [11, page 267]. Again, it should be emphasized

that CPD,PFA) pertain to the per-band decision--not the overall decision scheme.

The autocorrelation-domain methods to be elaborated upon in the follow-

ing sections can be viewed as a step towards higher sophistication and, therefore,
efficiency, of the WP component. In essence, a real-time correlator performs a

transformation of the detection problem from the time domain (with parameter t)

to a new one, namely, the correlation domain (with parameter r), in the hope
that the new "data", i.e., the correlation function y(T), can provide enhanced

feature separation between the signal and interference. The merit of such tech-
niques will always be judged against the radiometer which, by nature, takes no

account of any signaling details.

We note that the two scenarios to be examined involve the two most
different types of interference from a spectral viewpoint, namely, totally flat

(AWGN) and totally peaked (tones). Furthermore, they are designed such that

''m % •" ." ,' -. ."W •-. -- - " - . . - " 'w. - '•. . .. - . .
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the structural differences between the signal and interference can indeed be

exploited to the fullest. As a result, significant gains can be extracted

from the correlation domain with respect to the radiometer. At the other ex-

treme, no intelligent algorithm could distinguish, for instance, a random hop-

ping tone from unrelated extraneous random-tone interference, in the absence

of additional information. But even then, correlation algorithms would per-

form no worse than the radiometer. In conclusion, it can be stated that the

* algorithms to be analyzed herein offer the potential of performance improve-

ment over the common energy detector, which can range from none to impressive,

depending on the scenario. The structure and performance of decision rules

which will bring about those gains in the presence of mixed types of interfer-

ence, will be the topic of future research.

i.
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5.1 Wideband Detection of FH in AWGN

5.1.1 System Model and Proposed Algorithm

Henceforth, the term "wideband" will be used to indicate detection

on a per-band basis under the cardinal restriction (5-4). One mathematical

representation of a real-time autocorrelator whose actual implementation is

discussed in [12) is shown in Figure 5.3. Let us note that the offset T,

which is the domain parameter for the output autocorrelation function y(t),

varies linearly with the actual time t of the incoming waveform as a result

of the real-time nature of the correlating device. Therefore, the actual in-

tegration time is from T to TH. Since the radiometer output is only y(O),

i.e., just a data point in the new domain, improved performance due to the new

scheme is naturally expected.

The decision rule adopted here is as follows: The output y(T) is

power sampled at multiples of B-1, where B is the input BPF bandwidth and the

resulting samples are linearly combined and compared to a threshold, whereupon

a decision is reached CHI versus H0 for the corresponding spectral band). No-

P tationally,

G-1 H1
= Y ak Wk  Threshold (5-7a)
= k=1 H0

where Y is the decision statistic, Tk 4 k'B- 1,k=1,2,...,G-1 is the kth sampling

point in the T domain, and

Wk = y2 CT k)IL  (5-7b)

is the power measurement around the Tk point. The set of coefficients Jak I

can be chosen according to any particular philosophy and is subject to optimi-
zation. It can be argued that, under a low-SNR assumption, setting all coeffi-

cients equal to a constant ak=1 is a near-optimal choice. This, however, is not

a well-founded conclusion as it involves a number of approximations. Fortunate-

ly, simulation has indicated (see section 5.1.3) that performance of the summa-

tion (5-7a) is very insensitive to the exact value of ak and a number of reason-
able choices would work as long as the upper limit of the summation is properly
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truncated at a level of AG, which is less than G (i.e., x < 1). This is

because the last samples possess such an increased variance that their in-

clusion in the summation is detrimental. Analytically, this is equivalent

to letting ak=O for xG+1,...,G in (5-7a). Thus, a proper choice of x is

rather crucial, while that of I'G is not. For reasons that will soonrathr cucil, wiletha ofa k k=l

be clear, it will be mathematically convenient to let

I2
(T "k) kul,...,G
H X

ak - (5-8)

in the following calculations.

P.

0
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5.1.2 Performance Analysis

Here we shall attempt a performance evaluation of the decision rule

(5-7) when the interference consists of bandpass AWGN n(t). Thus, during one

hop interval 0 (t < TH , under H1 , the input r(t) to the autocorrelator of Fig-

ure 5.3 consists of a tone at some radian frequency w0 within the observed band

plus noise, i.e.,

r(t) = / cos wOt + n(t) (5-9a)

where n(t) assumes the typical bandpass representation*

n(t) = c[n(t) cos wot - nQ(t) sin wotJ (5-9b)

In (5-gb), Nl(t) and NQ(t) are the inphase and quadrature lowpass noise pro-

cesses, respectively, which are approximately independent and identically

distributed, with zero mean, flat two-sided PSD of N./2 W/Hz, and two-sided

bandwidth of B Hz each. Since double frequencies are filtered out by the

integrator, the autocorrelator output y(r) around the signal frequency is

* y(T) = TH r(t)r(t-T)dt = YSS (r) + ySN(T) + YNS(T) + YNN(T) (5-10)

with

y55 (T) = S(TH - )cos WoT (5-11a)

YSN(T) = ,w'(NI (')cos W0 + Nd() sin ° (5-lb)

YNs(T) = FT(NI(T) cos w0T - NQ(T) sin W0 ') (5-1ic)

YNN()= (NII(T) + NQQ(T)) cos W0 + (NIQ(T) - NQi(,r))sin W0T (5-lid)

* Since we shall be concerned with noncoherent detection, an arbitrary
phase e can be inserted in the bandpass description of the noise without alter-
ing the results.

- %p
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w' where the correlation-domain noise processes have been introduced, i.e.,

NJd )  fTH nr (t-T)dt (5-12a)

"C6 N ](i) - n t)dt (5-12b)

4b N II(T) J nI(t) nI(t-T)dt (5-120
r

NQQ(T) - fTH n(Q M nQ(t-T)dt (5-12d)

NIQ(T) = /TH ni(t) nQ(t-T)dt (5-12e)
T

NQI(T) = J nH(t) nI(t-T)dt (5-12f)
, T

Much of the following theory deals with the statistical characterization of the

*0 above noise processes. For instance, it is clear that the first four processes

* in (5-12a) and (5-12b) are zero mean and Gaussian, while the remaining are not

Gaussian. However, they will be approximately treated as such in the analysis,

particularly for 0 < T << TH, by virtue of a central-limit type argument, as

follows: The bandwidth B of Y0 and nQ(t) is much larger than T1; thus,

S. each integral in (5-12c) through (5-12f) can be approximated by a large sum of

a. noise-product samples, each sample taken B-1 seconds apart. Since we shall be
interested in values of T that are multiples of B1 , it can be shown that those

samples are mutually uncorrelated. Although this does not imply statistical
independence (which is a prerequisite for a rigorous application of the central-

limit theorem), it nonetheless reinforces the validity of the approximation.

This will permit us to calculate higher moments using Gaussian identities whose

C exact evaluation would otherwise be unwieldy. We furthermore note that simula-

tion has confirmed the accuracy of the approximation to a pleasantly surprising

degree (see section 5.1.3).
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The first point of interest is the mean value of y(T) in (5-10). We

shall assume that the input BP filter in Figure 5.3 has a perfectly rectangular

transfer function ("brick wall"), which implies that the autocorrelation func-

tion Rnn (T) for both ni(t) and nQ(t) is given by

A/ NOB\
Rnn (T) 0 1.n1(t)n1(t-T)) = 4fjnQ(t)nQ(t-'r)} Sa(WBT) (5-13)

where Sa(x) _ (sin x)/x. Using the fact that

S'{N} = SLINd} = -CNQ} = SIN =Q SNIQ=-0INQ = 0 (5-14a)

and

OJNI1 (T)} = VfNQQ(T)} = (TH - T) Rnn(T) (5-14b)

we conclude from (5-10) through (5-14) that

ly(T) = [S + (NoB) Sa(TBT) (TH - T) cos WOT (5-15)

Certain interesting observations can be made on (5-15). First, although the

quadrature component (sin W0') has been eliminated, the mean sriy(r)l still
includes an oscillation of unknown frequency*. That is why noncoherent (power)

sampling must be performed at the signal-processing unit. Second, we note ,-
that the mean value at zero offset d'{y(O)} = CS + NOB)TH is just the average

energy measured by the radiometer at the end of TH seconds, as it should be.
Since we have assumed that -in << 1, implying that S << NoB, it follows that

the radiometer output is dominated by the noise contribution--definitely not
a helpful situation. Third, and most important, it follows from (5-15) that,

if the output y(T) is power sampled at multiples of B-1, i.e., Tk = kB'l;k an
integer, the contribution of the mean noise will be eliminated due to the

nulls of the Sa(x) function. This fact will be exploited in the following.

The only thing known about fo = Tw/ 2ir is that it belongs in the
frequency band observed, but it is otherwise unspecified.

j~aq 1
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Let us return to (5-10) for a moment. Since we shall be interested

in the low-SNR case, we make the simplifying assumption that the signal times

noise terms YSN(-) and YNS(.r) are negligible compared to the noise times noise

term YNN(T). For Yin below -15 dB or so, such a simplification is quite justi-

fled, as also indicated by the simulation. When Yin is higher, the neglected

terms increase the variance of the output statistic under H, Cthey clearly are

not present under HO), with a resulting deterioration in overall performance.

At this stage, however, we shall derive a performance estimate for low SNR,

leaving more refined (and much more cumbersome) calculations for later. Within

this formulation, y(r) can be rewritten as

y(T) = C(T) cos wOT + Ne(T) cos w0T + Neq(T) sin WOT (5-16)

where

C(T) = {SCTH-T) CHI) (5-17a)

0o) 

-and the equivalent noises

N, (T) NII(T) + NQQ(T) (5-17b)

and

N q(,) N (T) - NQI(T) (5-17c)

As mentioned, y(T) will be power sampled at T k = kB -1; at which points.

.91N= 9 jNeq'CTk = 0 (5-18) '•

According to our previous discussion, Neq and Neq will be treated as Gaussian
I Q eq- ad'

noises. Furthermore, it is shown In Appendix H that NJqCtk) and NqC4j) are

uncorrelated for every k,j=1,2,3... ,G; similarly, the pairs (NlqC'kl), Neq CTk 2 ))

and (N C(rkl, NrC(k2)) are uncorrelated as long as k1 t k2• Coupling this i

result with the approximate Gaussian assumption, it follows that the sequences
%

.9'
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of noise samples N k=l and {N q Crk= 1 contain 2G Gaussian rv's which

*are zero mean and approximately independent. Thus, to complete their statisti-

cal description, the second moments (or variances, for this case) are required.

Those are obtained in Appendix H, wherein it is shown that

9 =( )21 ( )2( )2 (Fl(k) + F(k)) (5-1ga);: Nq~k) NB a- k  2(k)

and ,. ,

(NeqCk))2}= (NOB )2 (TH-'k)2 (Fl(k) - F2(k (5-19b)

where

F1(k) = (1-p') Sa2 GCI- 40p Idp (5-20a)

and •

F2(k) = (1-p')SaffG(C1 - + L\ a. k/-(5-20b)

and the normalized parameter ;k is defined as

LA Tk k k (2
Sk = TH = B- -9 ; k-1,...,G-1 (5-20c)

4,z

so that 0 < Ck < I. Some meditation on the functional form of F2(k) reveals

that it has a negligible contribution compared to Fl(k), so it will be dropped

.ra henceforth. From (5-19), we then have that

" *2(k) S-(NieqCk))2b ' (N'qCTk)f

x N4OB) 2 CTH-Tk) 2 Fl(k) = QNBTH) 2 C1-Ck) 2 Fl(k) (5-21)

which is a fairly simple expression, but also fundamental for the following.
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Let us now return to (5-16). As mentioned, the lack of knowledge

regarding wo forces us to noncoherent sampling. Let Wk - y2 krlLowpass denote

such a sample, which is also defined in (5-7b). We note that this kind of sam-

pling can be implemented via a square-law device, followed by a wideband lowpass

integrating filter; its bandwidth should be several times larger than the input

bandwidth B, but still much narrower than twice the carrier frequency. Then

(5-16) and (5-17a) imply that, under HI,

Wk = (STH + (N + N 2 ; k=l,...,G-1 (5-22)

0 By virtue of the approximate statistical independence of the second and third

noise terms in (5-22), (Wk)G-1 is a sequence of approximately independent noisy

samples, upon which the decision is based. As mentioned, this valuable property
of independence gradually diminishes as k -I G-1 because the fundamental assump-

; tion in assessing it (i.e., Gaussian equivalent noise) weakens toward the end.

This is also why those latest samples should be ignored. Nonetheless, such a

property is the key ingredient in the anticipated superiority of the correlator

versus the radiometer--namely, the fact that additional information can be ex-

ploited by incorporating all those new samples in the decision. Their approx-

imate independence keeps these samples from being statistically useless.

In order to proceed with the evaluation of rule (5-7), we need thm

mean and variance of the Wk's. From (5-19) and (5-22), we have that the dif-

ference of the means of Wk under the two hypotheses, AS(Wk), is given by

aS ~ Ji W 4SWkIH1 - SjWkjHO = (STH )2 (1 - Ck )2  (5-23)

Furthermore, using the independence between NJqCzk) and NeqCrk) along with the

0* Gaussian assumption yields the variance as

varWk = 2var {Ne(qke) N2qCNk )

- - 2 3ON 4 (k) N 4(k)j (2N 2 (k))2 (5-24)

with oN as per (5-21).
w i t O
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As seen in (5-23), (5-24) and (5-21), the quantities of interest for

Wk include a multiplicative factor (i - 2, a reflection of the fact that the
integration time reduces proportionally to Tk as Tk * TH. The insertion of the

coefficients ak in (5-8) purported to remove this factor without essentially V,

altering the results. Thus, if we define

Wk' Wk Wk (5-25)
- k) H21 k-)

it follows from (5-23) and (5-24) that "

A' Wk' =S (5-26a)

and 
2

varWk' = 4(NOB)4 F12(k) (5-26b) I.

while the decision rule (5-7a) reads: 
0

I Y Wk  (5-27)
k=1 "

We shall now define performance for the correlator in a manner that
is analogous to the radiometer as manifested by (5-6). In other words, within
the Gaussian assumption for Y, performance is quantified by (5-6a), where the

output SNR for the correlator is now

SNRcorr- (SJY@HI -{YIHo}) (5-28)

out varJYJHo

We wish to emphasize again that (5-28) is meaningful only when Y possesses a
distribution that is sufficiently close to Gaussian and the variance under

either hypothesis is the same. The latter assumption is justified for very
low-input SNR, while the former can be validated only though simulation. For

S.
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somewhat higher SNR, the proper measure of performance and comparison is the

pair CPD,PFA); in which case, varjYjH 1j is larger than varjYIHo by a signifi-

cant factor. More discussion on this topic can be found in the following

section.

from Based on (5-26), (5-27) and the uncorrelatedness of Wk'S, it follows
Sfrom (5-28) thatkstfolw

SNRcorr _ CXGS2  AG 4
out 4NG in

4CNoB)4 I F,2(k)  4 k F12(k)
k 1 k=1

or, using the fact that YH = GPYin'

SNRout = A(X,G) G-1 . 4  (5-29)SNcorr "YH (-9

where the coefficient A(X,G) is defined as

A IX2
A(X,G) : XG (5-30)

4G I F12(k)
k=1

and will be called the "correlator processing gain" or, for brevity, CPG. The
terminology is easily understood if we combine (5-6b) and (5-29) into a ratio:

SN corrrut A(2,G).YH  (5-31)

SN~out

The interpretation of (5-31) is that, within the framework of performance estab-
lished herein, the correlator will outperform the radiometer if the product
A(,X,G),Y2 is above unity and vice versa. We note that this product signifies

some kind of utility factor and is separated into two components: (1) A(x,G),

depends on features of the device used (G) and the signal-processing algorithm
employed (X), and (2) YH = STH/No, depends on scenario parameters (signal and

noise strength, hopping duration). Thus, the acronym CPG is naturally attached

aL
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to the component (gain), depending on the signal-processing aspects of the
detector. Let us briefly focus on it in the following.

Exact evaluation of A(x,G) unfortunately requires numerical integra-

tion by computer, which somewhat destroys any anticipated insight. However, a

bounding argument can be developed which, in essence, warrantees a minimum value

* for A(x,G), namely, Amin(X,G). This minimum value (or lower bound) can be used

in conjunction with (5-31) to warrantee a minimum gain for the correlator versus

the radiometer and is, in fact, very tight to the exact result for low values of

x. The argument is based on the observation that the quantity F1(k) in (5-20a)

6 is a monotonically increasing function of the argument Y thus,

*':'-. F1(k) <FI(XG) = (1-p')Sa 2FG(1-A)p dp' • k=l,...,,G (5-32)

0

since ;XG = X from (5-20c). The inequality in (5-32) can be strengthened by the

following steps:

41f (-p')Sa 2 G(1-X)p] dp'

1l 21fG(1-A) 2
< J' G(l-x)p do' G_1(1 _ -x) SaErxldx

0 0

< G-1(1-) fa Sa2[wx]dx
0

- = G_'(1-x)1(1/2) (5-33)
..

Thus, from (5-32) and (5-33),

A 2 2 X
. F12(k) < XG F, (AG) <

k=1 4G(1-X)2

which, when combined with (5-30), yields

7-v A(x,G) > Amin(X,G) Amin) = X(1-X)2  (5-34)
% %

'
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We note that the lower bound Amin depends on X only, while the exact gain A(xG)

* also depends on G. This is just a fortunate coincidence, and indicates that

Amin can be used for every G, as long as G >> 1. Thus, we arrive at the follow-

ing bound:

,NcorroNRut > (1-)2  (535H"SNrad
out

which, as mentioned, should be tight for small X.

In addition to this general bound, we can create a good approximate

formula for the above ratio when G(1-X) >> 1, as follows: since the steps

used to derive (5-33) are, in fact, tight successive approximations, we con-

clude that F1 (k) z G'1(l-kG-1)'1(1/2), which leads to

xG XG I I G I
* k" F 2 (k)z k  (- - '- m 1 Iel'7 =I =i " J"m= -) m72

k=1 1k=1 (G-k) m--G

. The last summation can be well approximated by the integral

G G 1
1 dx 1 fl X_ _

-(m- 2 x1 G(1-X)

provided that G(I-X)>> . Substitution into (5-ZO) leads to

5corr

SNRout x(1-x) 2 (5-36)F ..rad Y N(536
SNRout

which differs from the bound (5-35) in the exponent of (1-x). For low x,

(5-35) and (5-36) agree closely. In any case, (5-35) and (5-36) indicate

that the relative merit of the correlator increases proportionally to the

square of the hop SNR and could therefore reach significant levels, depend-

ing on the application (coded or uncoded systems, slow or fast hopping, etc.).° !I
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5.1.3 Simulation Results and Discussion

The proposed correlation algorithm plus the radiometer were simulated
by computer; a detailed description of this simulation can be found in Appendix
I. Here, we shall summarize the findings and discuss them.

First, the tightness of the predicted bound (5-35) was examined. The
following parameters were chosen so that the theoretical assumptions involved
in the analysis would be well justified: (1) la,'ge time-bandwidth product (G-
1000 or 30 dB), (2) small input SNR (Yin 1 -0 dB (3) small X (X =0.1) and,
(4) large number of trials (200), so as to assume statistical confidence. Since
those numbers were in accordance with the assumptions made, any deviations of
the simulation from the theory would indicate an error in the modeling process
(Gaussianness, etc.). Fortunately, that was not the case, as evidenced by the
closeness of the theoretical and simulation results, as shown in Table 5.1,
which lists the output SNR difference &SNR (in dB) between (SNRordB andS( rad OudL

(SNRout)dB both from theory (5-35) and the simulation. In other words, the

theoretical lower bound from (5-35) is

=SNR [ corr B (SNRrad F(1-x) d + 2(Y8) (5-37)

L d]BLB LS Out )dB out d]B LB

.

i W For X=0.1, the first term on the right-hand side of (5-37) is equal to -11 dB

while, for G0 (YH)dB = 30 dB+("in dB" We note that the simulation result
in Table 5.1 is slightly below its theoretical counterpart (lower bound) for

the first two columns, while it exceeds the latter in the last column. This
can be attributed to both the many analytical approximations involved and the
possibility that Yin, in the first two columns, is insufficiently small. For
Yin< '20 dB, the simulation seems to agree perfectly with the theory. In any
case, the gains depicted in Table 5.1 for the correlator range from 9 dB to
29 dB--definitely a major improvement over the radiometer.

Next, we look at the sensitivity of the decision rule (5-27) with
respect to the choice of X. This is illustrated in Figure 5.4, where the detec-
tion probability PD is plotted versus X(0 < 14 1) for various values of yin and

"FA, while G =100 is constant. For each set of three curves associated with
a single value of Tin' the corresponding values of PFA are 10"1, lO- and 10-6,

%,
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I".
Table 5.1. Theoretical and Simulation Values For (ASNR)dB = ( oSNRc t)

For Various Values 
of Yin (dB)

,1,

3a

G = 103 , X = 0.1

'Yin (dB) -10 -15 -20

ASNR (dB)

* theoretical 29 19 9
(lower bound)

ASNR (dB) 28 18.5 10

Simulation

4%

i a

C
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from top to bottom, respectively. In all cases examined, the trend is clear:

performance is insensitive to changes of X over a very wide range as long as X

is neither too small nor too large. So, any X in the range (0.1,0.8) would be

a suitable choice. Although the curves shown in Figure 5.4 are for a particu-

lar choice of ak's Cthe ones in (5-8)), an Identical kind of behavior was also "Z

found for other choices. This is a rather convenient conclusion since one does

not have to worry about optimizing X whenever the constants are changed. Fur-

thermore, it was found as a more general conclusion that the overall performance

(PDPFA) was insensitive to the particular choice of ak's. Thus, one can set

ak=, k=1,...,XG, which would simplify the decision rule to a mere accumulation

(summation) of the power samples Wk and a threshold comparison.

A set of simulated design curves for both the radiometer and the cor-

relator are provided in Figure 5.5, parts (a) and (b), respectively. There, PD

is plotted as a function of Yin (dB), for various values of PFA in the range of

10 1 to 106. For comparison purposes, the PFA 0-I and 10- 4 curves for both
have been redrawn in Figure 5.6 so that the relative gains of the correlator

versus the radiometer in input SNR can be assessed easier. We reiterate that .4.
direct invocation of (5-36) or (5-31) would not be meaningful in this case,

where G is relatively low and Yn is relatively high, because the variance of
in

the decision statistic under H1 is many times greater than under H0. Thus, any .

gains in SNR should be directly read off the operating curves. An alternative ,

comparison is offered in Figure 5.7, which depicts the familiar "receiver oper-

ating characteristic" (ROC) curves for both systems, parameterized by Yin. The

parameter G was set at G=102. Clearly, for Yin >-20 dB, the correlator will

outperform the radiometer by an amount which increases with Yin'

Finally, let us note that attention should be given to implementing
the almost instantaneous power measurement Wk; this can be accomplished using

a square-law device, followed by a fairly wide lowpass filter whose bandwidth

is many times that of the observation bandwidth B (i.e., its response time is

a small fraction of B-'). Still, that filter should be narrow compared to the

IF frequency in order to avoid undesirable power measurement errors. 0

0

S1. ]Zt
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.
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5.2 Wideband Detection of FH/DS in Random Tone Interference

* In section 5.1, a scheme was proposed for improving the detection of

frequency-hopping (FH) waveforms in wideband additive Gaussian noise (AWGN)

using samples from the autocorrelation domain. It was shown there that, under

fairly general operational assumptions, an approximate gain of (X,G)YH2 in de-

* cision SNR can be achieved over the energy discriminator (radiometer), where

YH is the hop SNR. This gain--being defined on a per-band basis--has a direct

positive impact on the overall system detection capability. The proposed algo-

rithm, albeit inferior to the optimal likelihood ratio test, had the advantage

of greatly reduced (hence, manageable) complexity.

The overall approach has been motivated by the recent implementational

feasibility of large time-bandwidth-product/real-time correlators such as SAW

devices. The purpose of this section is to show that, depending on the specific

scenario at hand, the use of such devices can bring about impressive gains in

detector performance, especially when compared to simpler alternatives such as

the radiometer. In particular, we shall consider the case of detecting a fre-

quency-hopping/direct-sequence (FH/DS) hybrid waveform when the dominant compo-
nent of the observation "noise" is random tone interference, arbitrarily located

within the hopping bandwidth. In addition, it will be assumed that the total

power of this tone interference is much greater than that of the background ther-

mal noise, so the latter can be ignored. It will then be shown that, for obser-

vation data with a large time-bandwidth-product G Cdefined by (5-4)), a very

simple algorithm operating on the output of a real-time autocorrelatlon device

can achieve almost perfect performance--in stark contrast with the poor perfor

mance of the radiometer.

Hybrid schemes have become increasingly popular spread-spectrum com-

munication choices due to the enhanced antijam margin which they offer. Adding

DS modulation to FH also improves the anti-intercept capability because the
"noiselike" appearance of DS makes detection more difficult. On the other hand,

* ~- multiple tones constitute a common model of nonwhite interference and can emerge

in a number of scenarios, i.e., it can be intentional (jamming of the band) or

unintentional (multiple users in a broadcast environment, adjacent rauar sources,

* etc.). It is also conceivable that the tone interference has been deliberately

inserted by the communicator in a pseudorandom manner so as to impede the inter-

ceptor's task, while it can be pseudorandomly avoided by the intended receiver.

Z Z
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In all of the cases previously cited, the tone interference could be

*W filtered out (notch filtering) and various techniques for doing so effectively

have recently been presented [14). The key provision of these techniques is,

however, that each tone stays at the notched frequency long enough for the fil-

ter to adapt; in the context of LPI detection, then, fast FH or low-duty-cycle

* pulsed interference could present a severe challenge for such systems. It is

also clear that, as the number of interfering tones increases, the required

complexity (number of filters) woull, soon surpass acceptable limits.

Here we address exactly those severe cases wherein the number of

tones per observation interval is both large and arbitrary (random), with un-

known frequencies, durations and phases. It will soon be seen that, in such

environments, the radiometer is doomed to fail as a detector. It therefore

comes as a pleasant surprise to conclude that the autocorrelation-domain algo-

rithm proposed here can provide excellent performance independent of all those

interference parameters. The section is structured as follows: Section 5.2.1

presents the system model and proposed algorithm, while section 5.2.2 proceeds

with the analysis of its performance; that of the radiometer is also outlined

here. Section 5.2.3 provides the simulation results and concludes with a brief

discussion.

5.2.1 System Model and Proposed Algorithm

The overall system structure is similar to that described previously.
Therefore, we shall illuminate only those aspects which are unique to the pres-

ent scenario. Again, our concern is the decision rule performance on a per-

band basis, as defined below. The autocorrelation domain will be employed to

produce a decision statistic since an optimal rule similar to (5.1), would, in

this case, be hard to establish and too complicated to implement.

Let the FH/DS hybrid signal to be detected be represented by s(t) =

-. / c(t) cos wot, where w0 is an unknown frequency within the observed spectral
band, c(t) is the DS code of rate Rc =T -1 and S is the signal power. The un-

cc4 " known interference consists of M tones CM is a random variable in each observa-

tion interval, which is equal to the hop time TH =RH-1 ), with Ik, wk and k

denoting, respectively, the power, radian frequency and phase of the kth tone.

The total received signal in CO,TH), under hypothesis H1 (signal present), is

given by
-5

"S
"4

'U;
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r(t) - 2 c(t) cos w0t + k 7 /2 CoSC(Kt + k) (5-38)

°16

Note the absence of thermal noise in (5-38), as previously discussed. The code

c(t) can be modeled as either a random sequence of independent, identically
distributed ±l's with Pr[c(t)-l- -0.5, or a PN code with a full period equal

to TH . As per the ratio N = TH/Tc U Rc/R H increases (N denotes the number of

code chips per hop), the performance difference becomes insignificant, a fact

also verified by simulation.

Let B denote the input observation bandwidth. The presence of the DS

code implies that B should be at least equal to Rc or higher, but definitely

much larger than RH. Equivalently, the time-bandwidth product G 4 BTH >> 1.

Furthermore, for simplicity, we shall assume that all tones have equal power

Ik=I/M,k=l,...,M, where I is the total interference power, and they are equl-

spaced within the bandwidth B. In other words, the frequency separation Ifk -

fk+1 between adjacent tones equals B/(N+I), which is much greater than TH1,

i.e., Ifk-fk+1l >> TH-1. None of the above assumptions is critical in the

forthcoming conclusions; they simply ease the analytical burden.

The real-time autocorrelation operation produces the output

iH
y(T) - H r(t) r(t- )dt ; 0 4 • TH (5-39)

Substituting (5-38) into (5-39) and rearranging redefines y( ) as

U

Y(T) = Syc(T)cosWor+ ()CTH'J l Co mT + knl n ('r) ) (

m=01Mn M(1) (5-40

where y c() is the code partial-correlation function (a random variable)

Yc(C) H c(t) c(t-r)dt (5-41)

T
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and n T),n ;k-l,2, .,M, are approximately Gaussian (via a central-limit-

*l theorem-type argument), bandpass processes (signal x interference terms)

defined by r

nk(T) = 1k(T) cos W1k - k (T) sin wk T (5-42a)

and

whre n0 (T) (ki 8(r) )COSW T + '1 kQ{) sin woT (5-42b)

~~where [

ai Nt, =f
TH C O

-c(t) o0 t- (kdt 5-43a)

*• T

() = Tc(t)0 k dt (5-43b)

T

k /Hft IosCU) -wk)t - k]dt (5-43c)

and
= TJH c(t-T) sin 0" CWk t" k dt (5-43d)

Before discussing the statistical characterization of the above noise

processes (section 5.2.2), let us examine the noiseless (mean) part of y(T) in

(5-4c, as shown in Figure 5.8. Of particular interest here are the envelopes of
the useful signal (small shaded triangle) and the interference (large triangle),

respectively, since the actual components, e.g., the first two terms in (5-40),

are modulated by the unknown frequencies. The structural difference between

the two correlations is evident: the DS code superimposed on each hop creates

X
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a narrow mean-autocorrelation function for ITI > Tc since the expected value
4, of the function yc(T) in (5-41) is zero. Contrary to that, the interfering

tones correlate for the whole interval [O,T . Clearly, then, a power (nonco-

herent) sample at T1 =Tc would measure interference only*; this sample could

be subtracted from the corresponding one at T -0 so that, under H1 , contains
46 the full signal power plus interference. This subtraction would approximately

cancel the interference contribution at T0 =0 so that, under HI, only the sig-

nal would emerge while, under H0 , the statistic would be almost zero. Thus,

the adopted decision rule is (see Figure 5.9)

= 2 21y = 02() -yf c  < 0 (5-44) .

LP LP H 0

where A0 is a fixed threshold. In the absence of thermal noise, A0 can be set

at a very small (positive) level in order to maximize the detection probability.

* The next section shows that the performance resulting from (5-44) is excellent.

_ 5.2.2 Performance Analysis

We focus here on the statistics of n((r) and no(T), defined in (5-42)

and (5-43). Let S{.} and var() indicate the mean and variance, respectively.

It is then easily shown that

".-- Sj-(T) -Z 0 ; j=IQ (5-45) '
b

and that

e- var )( = $(j , I(T))2{ (5-46)

In the following, we shall concentrate on offsets T= mTc; m=0,,2,...,N. In

fact, Only T =0 and =Tc are of interest (see (5-44)). Then lengthy manipula-

tions can establish the following facts (for proof, see Appendix J):

Any T, > Tc would also do, especially in the face of some uncer-
tainty about Tc.

,%

, ' %q9 5 ' ? ~ - - * * * 5* ~ - . . I * . .
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(a) The variance in (5-46) is given by

2 (N-rn)

S(c kCmTc) 2} = T-2  Sa2 (f- fk)Tcl (5-47)

where Sa(x) A sin x/x is the sampling function. i

(b) Each noise process has mutually uncorrelated inphase and quad-
rature components (therefore, by the Gaussian assumption, independent).

n( wt(c) Noises corresponding to different frequencies Ce.g., n"(T) and

na(T) with k # L) are uncorrelated.
fa

(d) Processes n(r) and no(r), however, have different properties,k 0 ii.e., nk(r) is a highly correlated process (as a function of T), while n,(.)
generally is not; in fact, samples of no(T) taken Tc apart could be uncorrelated.

Of the above conclusions, (d) is probably the most interesting from a

performance viewpoint: If the noise nO(T) had been as highly correlated as

nC(T), the decision rule performance (5-44) would have been perfect since the

same* random-noise sample would be obtained at T- 0 and T a Tc; thus, they would

cancel out. This not being true, a slight degradation in performance is expec-

ted, as was also observed in the simulation. Nonetheless, since the mean part

of the interference C(second term in (5-40)) does cancel outthe performance of

this scheme is far superior to that of the radiometer, which is oblivious to

that term. In fact, the radiometer output is merely the value y(O), which is

dominated by the power of the random interference (see Figure 5.8). Without
• .5'

further assistance, it is impossible to determine if there is any signal in the

total observed power since the interference contribution is random and, hence,

unknown.

As mentioned above, the high correlation of ak(T) implies that ak(O)-

01 Tc); j-I,Q. On the other hand, the degree of correlation between Sk(O) and

akCTc varies with the frequency difference Afk " fO " fk. For the special case

wherein one of the interfering frequencies fk0 coincides with fo' it is easily

seen that Bjo(O) SkOC); J-1,0. Those facts are used in the subsequent p"

analysis.

Same within a totally insigni'lcant change.
%
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We can now return to the decision rule (5-44): upon squaring, taking

the difference, lowpass filtering (e.g., rejecting double-frequency terms),

assuming that fkO= fO for one frequency and using the above conclusions, it

follows that

LP
".' °

+ ()T H si [M (0) 1 8CTc)) + STH(. (TH c~) (5-48)

- T -  .:i. HI:)H YcT)

where

n (T) + n (T) (5-49)

is the total BP equivalent noise. Let us note that, at least for the case of

a full PN code period per hop, ycCTJ) is approximately zero, which considerably

simplifies (5-48). Furthermore, even for the random-code model, a comparison

between analysis and simulation for the one-tone case (see next section) has

indicated that the impict of the rv ycCTc) is unnoticeable; hence, setting

YcCTc) = 0 seems to be a reasonable approximation for the general case. Still ,

a full analysis of (5-48) without further simplifying assumptions is extremely

complicated. In order to gain some insight here, we shall focus on the one- P.

tone random interference (M -1), with the reasonable conjecture that the multi-

tone case should provide analogous conclusions. 0

Since, in rhis case, 81c 1(O)- 01 (0)Z u(Tc)- a1 and n2(0) -
n2Crc), it follows from (5-48) that

2 I
= 2Y'1+ 2 Y norm (5-50)

2 L1
%'
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where we have defined the signal-to-interference ratio * S/I and the

normalized random variable

a1 l,norm T T cos *1 N Cn (5-51)

In (5-51), cn;n-l,.. .,N are the code chips and 1 is the random phase of the

interference. Clearly, under H0, A=0 with probability 1. Under H1 , it is

shown in Appendix K that

H -1 + 2 yI (5-52a)
2

and

varjajH 1 } - 2CSTH)4CNYI "1  (5-52b)

Based on (5-52) and the Gaussian assumption about A, the performance of this

decision scheme is predicted by the detection probability

~corr Y 53
",1 "D "("T

where aO* uAo/CSTH)2 is a normalized threshold and Q(x) is the Gaussian inte-

gral function. In the absence of thermal noise, 60* can be set arbitrarily

close to zero; thus, it always yields the zero false-alarm rate PFA- 0 . In

practice, A0* would be set according to the thermal-noise level and the degree

of uncertainty about the power S of the detected signalt.

The performance predicted by (5-53) is indeed excellent. We note

that increasing the interference power (hence, increasing YI-1) actually helps

detection instead of deterring it, while it has no effect on false alarm. For
corr> ineedtlinstance, it can be shown that, if N > 60, then PD > 99%, independently of

tAlternatively, this can be expressed in terms of the uncertainty

regarding the transmitter/intercept receiver's true distance.
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Y,, as long as &0" 4 0.4, i.e., one can tolerate 40% uncertainty about the I
signal power and still expect excellent detection capabilities, regardless of

the interference power. The above conclusion is rather insensitive to N in

that, for N -10, the corresponding minimum Porr is 90%.

The radiometer performance (shown in Figure 5.2) is easier to analyze

for an arbitrary N and is based on the fact that its output Yrad -y(O) can be

written as

-I Rrd=STH + ITH + 2l k a 1 (0u) (554

Let Nmx be the maximum number of tones which can be expected in any hop. Here,
for simplicity, we consider only the case Nx -1, where Prob[one interfering

tone] = Pr[no interfering tone] - 1/2 for each hop. Assuming that the thresh-

old YO is set at Y 0  IITH, so thatt PFA- 0 , it can then be shown that (see

Appendix L)

F--
S1- Q, if 1 >1

rad (5-55)
D lY)1 97 %I

Thus, the obtainable performance decreases with decreasing signal-to-interference

ratio YI and in the limit

lim prad . 1(max=1 (5-56)
1 0 D1

r orrwhich is certainly poor compared to P It has also been shown that the ra-

diometer performance is a decreasing function of Nmx so that the above results

constitute an upper bound for the general case. Finally, we note that the

tThis is selected so as to match the zero PFA of the correlator;

another choice of Yo would lead to PFA 0.5.

' "2" ,i"'.',."i.5"."''-' ',. ''.,.,'..'... '.' ; ". .t',',' ,' '':,", .,".",. - .. C., ". ,'" . ,'.' ,. .", " < w , .-.. -
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- question of threshold setting is much more crucial for the radiometer than the
I.,

correlator since the performance of the latter is effectively independent of

the jamming power.

5.2.3 Simulation Results and Discussion

~The correlator with one tone interference was simulated by computer;
the results shown in Figure 5.10 are based on 10,000 independent trials. (For

simulation details, consult Appendix M.) Also shown in this figure are the an-

alytical predictions (dotted lines) whose agreement with the simulation is
quite striking, even for such low values of N as N-3 and N-10. Since detec-
tion probability is monotonically increasing with N Csee (5-53)), those values

represent worst-case designs which nonetheless yield excellent performance re-

." sults. It was somewhat surprising to find that the Gaussian model provides

such an accurate analytical prediction, even for N -3; furthermore, setting

ycCTc) equal to zero proved to be a well-justified simplification. Note that

no false alarm was observed CPFA = 0) and that performance is practically insen-

." sitive to the amount of interference inserted. In contrast, the radiometer

performance Cas evidence by (5-55Ddeteriorates rapidly with decreasing S/I, as

expected. Finally, let us mention that the performance shown in Figure 5.10 is

for a nonoptimized (arbitrarily chosen) threshold ao*US 2TH2/N. In the absence

of thermal noise, further improvement can be attained for the correlator by de-

creasing a* to a very small (but positive) value.

Although analysis and simulation are not yet available for the multi-

tone case, it is anticipated that the gap between the radiometer and the corre-

lator performances will increase as the interference-to-noise ratio increases,
independently of Mmax . That again is due to the relative insensitivity of the

correlator to the interference nuisance parameters.

Comments pertaining to the power measurement of (5-44) are the same

as those in section 5.1.3. Furthermore, we note that, if the carrier frequency

f0 of the signal sought is known, narrow bandpass filtering of the output y(r)
in (5-40) prior to the power measurement will further enhance performance.

As mentioned, the theory of this section does not include thermal

noise. The determination, analytical evaluation and simulation of algorithms

which operate satisfactorily in a mixed environment (i.e., both thermal noise

and random interference) will be the topic of future research.
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APPENDIX A

, PROOF OF EQUATION (3-8)

Let us start from (3-5), i.e.,

ex -X~NYC 2 N 2 N H 1
A (r(t)) x 2 exp A (A-i)

" = jlr'j H210

with yc as per (3-6), cij denoting the Ith chip of the ith code pattern and

r. as per (3-7). Consider the N-dimensional linear space consisting of all bi-

nary patterns ci;i=l,...,2 of length N. Now observe that this space can be
N-

divided into two disjoint complementary subsets, each of cardinality 2N
I , by

the rule that, for each possible vector C1l belonging to one of the subsets,

-c belongs to the other subset. Exactly which vectors cl are included in which

subset is immaterial as long as the above rule holds. We can now perform the

.- summation in (A-i) ovei one of the two complementary subsets instead of the

whole linear space, with the equivalent rule.

N-1H

f7 where r scle...' rN),'1 is one of the aforementioned disjoint subsets and any

resulting saefactors are absorbed into the threshold A'0. In (A-2), cosh(x)

is the hyperbolic cosine function

x _x

cosh(x) eX e (A-3)
SI..

mrT  rSuince c xs fantr eve functorbe ofnto the sutisold i 0 n (A-2) , oshextende

(I;

ove the hproli line spactio

C

00

(- cosh*., *x) -%~~ eX .+ e * 4 .'...'J* x
,
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H1hr- (A-4)

In oderto rocedwe first need to introduce the superscripts r ()adcN

qP which will indicate the length of the corresponding vectors, and then prove

the following:

Lemma A. It is true that:

2 N N
Scosh (r.cj N 2 NTT cosh(rj) (A-5)

Proof: The proof is by induction. First, let N-1. Then,

2
cosh r&'c'' cosh (rj) + cash (-r,) = 2 cosh(rl) (A-6)

since cosh(x) is even function. Thus, (A-5) is satisfied for Na1. Next, assume

that it is true for N=k, i.e.,

2 o h k .=k 2  k k ( - )
cah T cosh (r.) (

- i=1j=1

and prove it for Nk+l. Indeed,

~ csh(r(k+l).C(.k+l)) = [ (k) (k) +r+)+cs ~k). (k)(A8

co I -c +r c

i=1 h J1 Icoshk+1 + csh ~ k+

(A-3
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A3

But,

cosh(a+b) +cosh(a-b) = e +e +e +e

a b) a-b -ab b)

2 2

2 cosh(a)cosh(b)

which, upon substitution in (A-8), yields
.

I. cosh r k Sl.c. 2 cosh ( ).  kS cosh(r k+1)

.k2 k+

2 (k) (k)
-2 cosh(rk+1)Z cosh ( .c )

k k k+1
2 2k 77ck+l) 2 osh(r 2 F-coshr(A

kc hr j== =l

where the truth of (A-8) has been used. Equation (A-10) completes the proof of

Lemma A.

If Lemma A is applied to (A-4), it renders it equivalent to

N N 2 VS" HI

2 TF cosh -N0 ri) > A'
0  (A-l)j=l 0 A-I)F

0

which is (3-8).

S,.I"C.
I?

I"C "..' b'' " . "" "€ - " - €..." ". .. . " "" . ." '



APPENDIX B

* PROOF OF EQUATION (3-10)

Let us rewrite the decision rule (3-9) as

N HI
A: > y. Z A'0  (B-i)

j- H 0

where the independent, identically distributed random variables (iid rv's) yj

r. assume the form

J2

n j)2  under H0  (B-2)

YJ VT c c + n under H1

In (3-14), n. represents the Gaussian rv

jT C
j = / c ~nl(t) dt (8-3)

(j-l)T

.

whose statistics are independent of j.

A precise analysis should account for the exact distribution of yj

under either hypothesis. So, for instance, under HO, Yj is chi-squared rv

with N degrees of freedom. For large N (of the order of hundreds or more, that

is the practical case), very satisfactory approximate results can be obtained

which circumvent the difficulties of an exact, but enormously complicated, anal-

ysis. This is done by invoking a central-limit-type argument: The decision

statistic A, being the sum of a large number of lid rv's yj, is approximately

Gaussian distributed, with mean

fnA'jH k = N*IyiHd ; k=O,1 (B-4a)

and variance a
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B2

var)Jk N var Yj I'k k=O,l (B-4b)

under either hypothesis. Thus, having the second-order statistics of the in- 6

dividual rv's y. and, subsequently, of A' from (B-i) enables us to determine

performance immediately.
VLet

m V-T cj 6kl (B-5)

so that

y. m+nj)2  = m2 + n2 + 2mn (6)

Furthermore, the Gaussian rv n. has zero .,.e?- dnd variance

N T
S n = 2 (B-7) ,

n' 2

Thus, from (B-6),

m2 + 2  2  +N0TC
m' + a n S T c 6k 1ln = c ki *~

- N0 T 1 + 0( Tc) 6Yck) (B-8)

Finally,

varyj= var m2 + n.2 + 2mnjl = var nj2 + 2mnj var nj2( + 4m2 varInj (B-9)

U;2 nn njaeucreae n3 = ) Thus,

since the random variables n 2 and n are uncorrelated (n) )3

from (B-7) and (B-9),

(n4 ~ 4) 4m2 2= 2~/L 2 k)2
varyj n = n 2n[an + 2m =(NoT + 2yc (B-10)

Equation (3-10) results from combining (B-8) and (B-10) with (B-4).



APPENDIX C

PROOF OF EQUATION (3-20)

Let the received waveform be

0 00
IY" cj pCt - JTc) cosCwat + +j) + n(t) CHj)

r(t) = O~t<TH (C-i)

n(t) CHO)

where is a sequence of independent phases and the synchronous model ( = 0)

is used. Let c = [cc2,...cNl and I = 01,02'...'N] denote the random vec-

tors whose components are the successive random chip and phase values, respec-

tively. Then, by virtue of the assumed independence, the generalized likeli-

hood ratio reduces to

Ar(t)f,Ar~t) C_ f(r(t) IHo)"..

a'

NT (j-1)T.
j=l c f (rMt)IHo)

J N c {f(r(t)lH 'c ; j ; ( J- )Tc < t <c) o
j=1 f(r(t)J H0)

C Cit

I r exp'Y A (C-2)
w e=1 t th c n e v o H 0

where the Ith chip-interval envelope rji is given by



C2

r r (C-3)

and rj Q have been defined in (3-18). Furthermore, we note that, although

r1 and r~. depend on cj = i through the combination of (3-18) and (C-1), their
1. 2

t squares do not (simply because c
2 = 1). Thus, rj of (C-3) is independent of

cj, which means that

j Ot('y' rj) 0(vS-rj) (C-4)

SSJ

substituting (C-4) into (C-2) yields

N H
A (r (t)) =exp I-NY ~ ]T /T(i ri)~ AO (C-5)

j-1 H0

whose equivalent logarithmic version is (3-20).
6

C-

.1o

I '
I

Cb

df

4t

-C

k." 'S r. %- ~9*
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APPENDIX D

PROOF OF EQUATION (3-23)

A Gaussian-approximation-based analysis of the low-SNR, chip-noncoherent

detector, illustrated in Figure 3.3, can be performed following guidelines similar

to those in Appendix B, as follows: Let the bandpass AWGN n(t) be represented by

n(t) = v7 ni(t) cos wot - nQ(t) sin w0t (0-1)

where ni(t) and nQ(t) are baseband, independent, Gaussian processes with a flat

one-sided PSD of N0 W/Hz each. Conditioned on the unknown phase #j and the

±1-chip c. of the interval (j-1)Tc > t 0 jT c, the inphase and quadrature variables

rij and rQj of (3-18) are Gaussian with means
r.

Sjr~jIj.,cj = vST Cj 1 Cos 43

j=1,2,...,N (D-2)
k=0,1

8jrQj I pcj = 47 Tcj k sin

and common variance 0 2n

2 3 = No- (-3
n var rlj var rQj = T (D-3)

where 6k1 was defined in (3-10c). Thus, averaging the phase* #j, it follows

that each of the independent envelope rv's rj of (3-21) has, under H1, a Rician

distribution

*Again it is easily seen that the value of c becomes irrelevant due

to the squaring.

emb
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Assuming that an instantaneous power measurement can be formed at
time T =0 and T = Tc, we have the decision rule:

40 PCTc) Z A (M-11)

with P(t) the power at time t and with

Sl 2 TH 2

0  N (M-12)

The factor

(N)2

* is used to make A = 0 under HO. Each chip of c(t) is modeled as an independent
random variable with values ±1, each with probability 0.5.

.'.

Figure 5.10 from the text presents the probability of detection CPD)
for various values of N at a false-alarm probability of zero. Each point used

to determine the plot of PD utilized 10,000 trial runs. Besides the code se-

quence, the phase *1 was randomized over 0 to 2w radians.

C0

SI

'J.
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D2

ir

f(rjIH , .4exp- ( + c, Ua o (rj >O0) J-,.2...N (0-4)

where Y is the predetection SNR while, under H0 (i.e., signal absent, Yc a O),

" (D-4) reduces to a Rayleigh distribution

f(rjH) . rexp rJ- (rj; 0) (0-5)

Therefore, the statistics of the decision rv rX' in (3-22), being the square

root of the sum of N iid rv's, can be precisely found. For example, under H0,

it is a chi-squared rv with 2N degrees of freedom, resulting in a false-alarm

probability

'SD

F 1 x N-1 exp[-x]dx = 1 - (incomplete Gamma function) (D-6)PFA = N-17

x 2/2

while the corresponding detection probability is given in terms of the general-
4- ized Marcum Q function

P0  QN(*,Xo) /x() exp I (*xdx (D-7)
D= QN 2 IN-1(Xd Dl

x0

In the above equations, x0 is a normalized threshold

4 
4

x0  (-8a)

4'

while

"= (D-b)

i¢
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Although the above results are exact, they are cumbersome to use from

a computational viewpoint, expecially for large N (N >100). Besides, the Gaus-

sian approximation about A' becomes sufficiently tight in that region and thus

emerges as an attractive and simple tool.

Let us start from the fact that

r vS T cj acos * + nj (0-ga)2
cj k

and

r Q = *TcJIkl sin #j + nQj (0-9b)

*In (D-9), the Gaussian rv's nlj and nq i are defined by

n f iT c n,(t) dt (D-l0a)

(j-1)T C

and

n Q f nQ(t) dt (OD-1b)

(j**l)T~
cI

*and are, therefore, mutually independent, each with zero mean and varianceo2

Then, the squared envelope r 2 is

r i2 = r, 2 + rQ J2 ST c2 a k1 + n, 2 + no 2 + 2,1 T~ cj c8ak1 (nlj #j +nQj sin #j) (D-11)

It immediately follows that

Srj = ST c2 6 k1 + 2a n 2 = ST c2 a k1 + N0Tc m (N0Tc)(1 + "c 'k1) (0-12)

* which is (3-23a).

In order to calculate the variance of rj2 in (D-11), we note that the

first term is a constant (thus, it can be neglected), while the second, third

and fourth terms are pairwise uncorrelated. This is because: (a) n~2and nlQj 2
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040

are functions of independent rv's and, (b) the fourth term includes both cj and

Or which are independent of the noise and zero mean. As a conclusion,

var _ 4 j2 _{rj}) var njj2} + var(n 21

4ST 2  kvarjnj cosj + nQj sinj.

M 4n +4ST 2 a2 6k1 (NOTc)2 + 2 STC3 No 
6k

(NoTc)2(l + 2n 6kI) (D-13)

since

var cos *j}= var sin j} =

Equation (D-13) is identical to equation (3-23b).

,
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APPENDIX E

" •PROOF OF EQUATIONS (3-44) and (3-45)

First, let us note that, once Tc is substituted by Tc/2, (3-43) is

derivable from equation (3-10), i.e.,
a

9 (rm 2 1H' '  N= 1 + s Tc  NOTC l
cw Lm ~ 2- No-amkk1 -T (1 +i Yck1)

and var r.m2 Hk} 0 2 _ 0 k~ Ic 1 + Nc 26+ k

and
S4 kl (E-2)

Consider the situation in Figure E.1. From (3-41),it follows that

rj2 = c 6 + n (E-3)

j2(T i

r 6 kl + nj+,l (E-4)

j+1'1  = r Cj+ 1 a k1 +n.., E4

where noises nj2 and nj+l, 1 are mutually independent, as are c. and cj+ 1 .

Thus,

2
a r J2 rj+,1, SV#Fc) 'k1 j c*1 J n+ =, 0

In an analogous way,

rjl= rS (T? Cj\kl + njl (E-5)I'. Ft
ot .~.

7 ., ~ ~ f t .. t p~~-df
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E3

which, combined with (E-3) yields

ST C2 STC2

r r4 - ~~ + 0~ 1  ~ k (E-6)
4 4

*by virtue of independence between n i and n 2. Finally, substituting (3-43)

and (3-44) into (3-42b) yields

=( N [2 fjrj12 S ji rJ2 j

J- 4
0-NI C6 S

NE.~)[ +c k1 + kc

N N 0 T c .[1 +( 13 c 6k (E-7)

which is (3-45).

C'

...........
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APPENDIX F

PROOF OF EQUATION (3-46)

We follow a procedure similar to Appendix E; however, the picture is

changed to Figure F.1, under the assumption of a worst epoch = I/4. Then, we

can write that

21r 2 -- cj  + n. (F-I)

and

40 rjl = VS4c) [cj_ + cj] + nil (F-2)

Note that rj2 is identical to (E-3); thus, d4 J iHk;=I/4 is as per (3-43).

Furthermore,

121rj12 Hk; -1/4} =( ) j +.j1;

Jjj ;4jiI ;=/4Asame Hk;:=/ Ad if fjj (F-3)

where the conditioning events Asame and Adiff refer to c _1 and c. having the

same or a different sign. Clearly,

1 A (F-4)"'

Pr VAsamej = Pr = F4

a fact used in (F-3). Let us now note that, under Adiff, the mean of rji is

zero while, under Asame' it is equal to YTc/2. Thus,

.~rj2IHk;9=1/4 + (.-Ya + T N + T4)J + (F-5).

In exactly the same way,

IT 
2

whih j2t k h pro of (\N-+ c4/'.k1

which completes the proof of (3-46).

ILS
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APPENDIX G

PROOF OF EQUATION (3-63)

Let
N H 1

Aj A H0H ' (G-1)

be the decision rule (3-62a), where

)= (1) r (2) (G-2) S

(i)and rj ;i=1,2 is given by (3-62b). Then,

r(i) = / T c k + n (i) (G-3)rj ci kl j

w() and n(2) are zero mean, mutually independent Gaussian rv's with

common variance a 2n = NoTc/ 2 . From (G-2) and (G-3), it follows that

= Tc2 6 + T c. n''+n + n.' n.L (G-4) "

yj 1- S T 2k1 + /T Tc j 6 k1 + n( j +(

Thus,

S = S T 2 Sk1 (NOTc)yc 61( (G-5)

which justifies (3-63a). Furthermore,

var{yj = S Tc2  kl var n (1) + nj(2) + var n. (

2n 2  4n4 ST=S Tc6 2 a + an = O-nC

= k1T~~ n+ a= k
VM 

(No0Ts pe+ Yc (3k6

as per (3-63b). '



APPENDIX H

STATISTICAL CHARACTERIZATION OF NOISE PROCESSES

N I(T) AND N Q(T)

We define Neq(T) and Neq(,) as per (5-17) and (5-12). It then follows

from (5-13), (5-14) and (5-15) that N Ck), N =kB " are zero-mean

random variables, i.e., (5-18). Furthermore, by virtue of a central-limit-

type argument (summations of a large number of rv's), they are assumed to be

approximately Gaussian.

We shall first show that Ne - and Ne(Tj) are uncorrelated for

every k and j; in which case, they are also approximately independent (due to

the Gaussian assumption). Indeed, from (5-17),

S{N~qCTkJ c = {NIICTk) NIQC j )} +g{NQQC~k) NIQCrj)

-jNIIC'Tk) NQICTj) - g"QQCk) NQICTj) (H-i)

Let us consider the first term on the right-hand side of (H-i); a similar line

of argument applies to the next three terms. By definition,

&I N 1 (T k) N1 Q(rj)~ f /T Hj T H n~jn~ -Tk) D nQt~) t1d (H-2)

k k

However, n(t) is independent of nT(t), which implies that the integrand of

(H-2) contains the factor e nQ t2 -Tj)}, which is zero. Thus,

.,{NIICT k) NIQC=j) 0 (H-3)

Along with (H-i) and the above remarks, (H-3) establishes the uncorrelatedness

of NJq k and N Q

A'

'V o°

, lt- ,,,.,4., W+. p €.{a",?. . 5 ." "'","'"% ' 'b "'- ' " "+% " 
" ' ' "

% ° .. *'°% %A'.' " .- *" ,. * ", "a ""- % " " A" - - '.. -, ", A" " A, .. "
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Let us now consider Neq C(T and Ne(tk2) for Tk $ k2 • We have that
I{ eq~r2 eq

q r i CTk) ,Niik)NIiC( k2 + 'EVINQQC'ik1)NQQC'k2)

O{ + NIICTkl)NQQ~rk2) + !JNQQCTkl)NIICTk 2)} (H-4)

But,

(NIICT kI)NII C~k2)I= fTi H T H 9{nICtjn I Ctl - 'kl)nICt2)nICt2 Tk2) dtldt2

Tk1 Nk 2  tkl k2  (H-5).

We shall approximate the integral (H-5) as the double sum

G G
1 "NIIC klJNIIC'lk 2J) (An) I ,'ni(k)nICk-kl)nI(m)nICm-k2) (H-6)

k=k I m=k2

where AT = TI =B
" . Approximating integrals as per (H-5) by summation is a corn-

• ,.

mon and well-founded practice. We note that ni(k) and ni(k-k1J are independent

rv's since kl O, as are ni(m) and nI~m-k 2). Furthermore, due to the indepen-

dence of the rv's involved, the expectation in (H-6) will be zero whenever all

four sampling times k, k-k1 , m, ri-k2 are pairwise different, as shown in Figure

H.1(a). If we assume that k1 < k2 , we then observe that the three remaining

cases depicted in Figure H.1 are (b) k-k1 =m-k2 ; in which case, k~m, or (c) k=m;

in which case, k-k1 # m-k2, or (d) k=m-k2 ; in which case, k-k1#m. In all those

*. cases, the common conclusion is that at least two rv's exist which do not coin-

?. cide with the others. The net result is that the expectation in (H-6) will

a'.. ys be zero, establishing the approximate uncorrelatedness of NIICTkl- and

NIICTk 2) . The same exact argument establishes that *TNQQCTkl NQQCk 2)J=O,E~iiNCC~2 kO I QQ 1~INI~2 .'
while it is even easier to show that r NIICk 4 

2 ) aklN--

0 0. Thus all of the above can be combined in (H-4) to illustrate that differ-
Ce 0.

ent samples kj #Tk2) of the same process N 1q(T) are approximately uncorrelated.ei
It can similarly be demonstrated that the same is true for N eq() defined in

Q
(5-17c).

, .S
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-0

k1 i rnk 2  k m 
p

(a) All sampling times different

k-k 1  m-r-k 2  km

(b) k- k 1 m-k 2

t~m-k)Ck-kk=m

(c) k m

k -k1  k -2M

'p(d) 

k m r- k2

Figure 11.1. Some Possible Combinations of Sampling Times in (H-6)
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Finally, we are concerned with the variance of NeqCTk) and NeqcTk),w areTQ
i.e., (5-19). Clearly, since the respective means are zero, those variances

coincide with the second moments. Furthermore,

!~ (NqC Q) 2 I N 2(,C k) + rJ"C N 2'", }(
= ~I?~k) J{Q(k) ~ 2. 2d'NCTkJ) (H-7)

But,

J{N (I~xlO}= fH f TH g' nl~tO nltl-r0 nlt2) nlCt 2-r(kJIdtldt2

Tk Tk
241L (H-B)

f ,n, (t'l+Tk) n I(tl)n I (t2+Tk) n I itV2)J dt dt (H-8)

0

where a simple change of variables has been performed. We shall now use a fa-

miliar property of four jointly Gaussian rv's (xl)t=I, namely, that [15]

tr4 x i = IX, 1  efX3 X4 + g x 1 X3 r.x2x4~ +"IY4x1x4' ~3  (H-9g)

Applying (H-9) into (H-8) results in (for any ):

2 
TH-_

9IN H N()} : n1Ct+T)nnCtD 1 &In(Cti+T)n(CtO dt'dtj

4 TH-T

C"+ f jn I C t1+T)1 nICtj 2 nIC n1  ) CtD dt'dtj

0
2", TH-H

- s I n, t C +,TJ n fCt 'nIC t njCtj+T ) dtjdt

0

-r4

R2() CT 2 TH- 2tl-Ddjt

= Rnn ( TH- T) + (-nnCt

0
T-

+ i RnnCtl-t2+T) RnnCt!'t2 (

0
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where Rnn(-r) 91 Jn1(tn(t+r) is the correlation function of n1(t), as per

Equation (H-10) can be further simplified. First, we note that, for

T = = 1, R ITk = 0, so the first term drops out. Furthermore, one can
*employ the even symmnetry of Rn (-r), i.e., the fact that Rnn(T) = Rnn(-T), in or-

49 der to reduce the two-dimensional integrals to one-dimensional ones (see (15),

page 325 for details). The result is then

s1NIIroj=~ 2fTH CTH JNQB\ Sa (arBp)dp

0

+ 2f CT= fB ' ]S fB r d (H-11)H Tk P) - k

and defining the normalized parameter 4k as

a 'k - k -k (H-13)

we can rewrite (H-li) as

-fjNICkJ 2 ( TH k) 2Lfj (l-p')Sa2 EBp'CTH 0dpo

+ f 1 (1-p' )SaF[B(p CTH-T +rk] SaEB(p'CIITk-kdoj

- NOB) CTH Tro CF1(k) + F (Q)) (H-14)

2I
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where

F1(k ) = (1-p')Sa2 [BTH' - pdP1 = (1-p')Sa 2[GC1-ckp'Idp' (H-15)

and

F2(k) = (1-p') SaEG(p'CI-Ck) + k)] SaEG(p'Cl-¢k - ck]dP (H-16)

exactly as in (5-20). Combining (H-14) with (H-7) yields (5-19a).

C. Quite similarly, it follows from (5-17c) that

= - 2.9TNIQ(T)I- 24'9NIQ ()NQI(T)? (H-17)

But,

TH
JrN2Q(r) = f rnctl)nQCtl-)nICt2 nQCt2-T) ,dtdt2

= ff R2n tl-t 2 dtldt2  = TH R nCt1-t ) dt2dt (H-18)

T0

since nl(t) and nQ(t) are independent, with the same correlation function. The

integral in (H-18) is identical to the second term in (H-10), which corresponds

to the Fl(k) term in (H-14). Furthermore,4 C

.TH

IN (,rT) NQI(T) =f rnICtl)nQCtj'T)nQCt2) nQCt2 "4 dt dt2

R nn-(t - tj + -)Rnn(ti  - dt (H-19)

0

o9) ..
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which is identical to the third term in (H-1) corresponding to the F2(k) -

*term in (H-14). Combining the above with (H-li) (note the minus sign of the

second term) results in

+ eq- . CN(F 1(k)- - (H-20)

4. Q~' CO)(H kic /F~ F2(k))

as per (5-19b)..

4P4

Z*r
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APPENDIX I

COMPUTER SIMULATIONS OF THE RADIOMETER AND AUTOCORRELATION TECHNIQUES

FOR DETECTING FH SIGNALS IN GAUSSIAN NOISE

1.0 INTRODUCTION

Theoretical performances of the autocorrelation technique and the

conventional radiometer approach in detecting frequency-hopped (FH) signals
in Gaussian noise, discussed in earlier sections of this report, have been
verified through computer simulation. The simulation results are summarized

in this appendix. Close agreement was observed between theoretical predic-

tions and simulation results.

2.0 SYSTEM MODE1.

The system model studied here is illustrated in Figure I.1. The

* total spread bandwidth Ws is segmented into M B-Hz bands, where M = Ws/B.
* The received signal from each of these B-Hz bands is processed by a waveform

processor which determines whether or not an FH signal is present in that seg-

ment of the spread bandwidth during the time interval of observation. The
decisions made by the waveform processors are accumulated to form the final
decision with respect to whether or not an FH signal is present.

Two forms of waveform processing are studied by computer simulation:
(1) the radiometer, and (2) the correlation detector. In each case, the wave-

form processor output statistics (mean and variance) are collected under either
a'" hypothesis regardless of whether or not the signal is present. The channel is

assumed to be corrupted by additive Gaussian noise in all cases under consider-

ation herein.

Based on the waveform processor-output statistics, the detector out-

* . put signal-to-noise ratio (SNR) defined here as

YIH 0 ) - S(YH]H

SNR0  = var(Y (I-i)

is first computed as a function of the bandwidth-observation time product BTH

and the input SNR Yin' which is defined byL
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0 0

In (I-I) and (1-2), the following notations are used:

SCYIHo) = mean value of the waveform processor output when signal is not
f* present

JCYIH 1) = mean value of the waveform processor output when signal is present

varCYiHo) = variance of the waveform processor output when signal is absent

S = received power of the FH signal to be detected

B = input bandwidth of the waveform processor

TH = the FH time

No  = one-sided noise power spectral density (PSD) of the receiver.

The input SNR Cyin) is related to the hop SNR CyH) by the BTH product, as

follows:

STH
YH =Iff = CBTii) Yin (1-3)

0 J

Also computed in this appendix are the probabilities of detection

CPD) and false alarm CPFA) of each of the waveform detectors. They are related

to the first two moments of Y by:

PFA = 1 erf [o -vrCY1Hoj (1-4)

and

S 1 1erf v Y (1-5)

D - 7~er L1~~
In (-4) and (1-5), A0 denotes the threshold setting and erf denotes the error

function

-. ,.
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erf) - ]* et 2 dt (1-6)

*0

For each desired PFA' the probability of detection Po can also be determined,

as follows:

1 1 (CIHO  - CYIHI) + V14 viiYlT o erf'l(1 - (1-7)

PD =  2 rf varcYH()17

Gaussian approximations have been made on the waveform processor out-
put Y in arriving at the expressions for PD and PFA in (0-4) and (0-5). This

is justified by the fact that Y is the sum of a large number (UBTH) of indepen-

dent random variables (see next section) and by invoking the central-limit

theorem.

d 3.0 RADIOMETER SIMULATION

-V For the case of the radiometer, the waveform processor performs the
following operation on the received signal r(t) to obtain the detector-output

variable Y:

J 1 TH P 2 (t) dt (1-8)

"H 0

where p(t) is the envelope of the received bandpass signal r(t), given as

r(t) = YS cos w0t + 'Z ln(t) cos w0t - /2 nQ(t) sin w0t (1-9)

ifIn (I-9), w0 is the center frequency of the received signal and n, and n, are

the quadrature components of the bandpass noise process with a bandwidth B.

Thus, nI and nQ are independent, zero-mean Gaussian processes having one-sidedK noise PSD No and variances NOB/2. We assume here that w0 coincides with the

center frequency of the BPF with bandwidth B (see Figure I.1) so that there is
no filtering loss on the received pulse. This assumption is not unduly restric-

tive since most channels in the bandwidth B will not experience excessive fil-
tering loss except for the ones near the band edges.

C.0
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Since r(t) is a bandpass process, it can be expressed as

V r(t) Im vr u(t) eJWOt I  (-10)

where Im(z) stands for the imaginary part of z and u(t) is the complex envelope

6
u(t) = + ni(t) - j nQ(t) (I-li)

where j = v'T. The envelope p(t) is given by

P(t) = lu(t)I =(1 2 n,(tt (-12)

Since nI and nQ (and, thus, p(t) also) are bandpass processes with

bandwidth ±B/2, by invoking the (stochastic) sampling theory, they can be rep-

resented as samples taken at time intervals separated by AT = 1/B. In other

words, a valid simulation of the integration process (1-8), from which the de-

tector output variable Y is derived, is the discrete-time summation

- I

where G = BTH is the number of samples to be accumulated over the hop time TH•

The discrete-time simulation (-13) is equivalent to the actual process (1-8)

in the sense that, if the sample values r(k/B) are taken from the actual band-

limited analog signal r(t), the discrete system outputs at the sample time

instants Cin this case, after G = BTH samples have been accumulated) will be

identical to the analog system output at the same instants*. The noise samples

of nI and nQ input to the discrete-time simulation model can be taken to be

uncorrelated and, thus, independent. This assumes that the impulse response of
the bandpass filter preceding the waveform processor has zero crossings at 1/B.

One BPF response which will satisfy this assumption is the ideal response

S IW- oI B/2
IcH(w) = (I-14)r 0 elsewhere

..

Reference A. Papoulis, Signal Analysis, McGraw-Hill Book Company,
1977, pp. 25-27.



16

This ideal response is closely approximated by actual BPF's with sharp cutoffs

* which will probably be the case in actual radiometer implementations.

Table 1.1 summarizes the theoretical predictions on the radiometer

output statistics which are required to compute SNR0. They are given here as

functions of BTH and S/NoB. The results summarized in this table are those

-6 derived from the discrete-time model, which is of interest when calibrating

the accuracy of the simulation.

Table 1.2 summarizes the radiometer simulation results. It is ob-

served that the simulation results agree very well with the computed results

0 from theory Cwith SNR 0 error< 0.25 dB in 200 trials).

Based on the simulated results of the means and variances of the

radiometer output under H0 or HI, the probability of detection CPD) of FH sig-

nals by the radiometer technique is computed by (1-7), for each desired proba-

bility of false alarm CPFA), as a function of input SNR Yin. The results for

BTH = 100 and BTH = 1000 are summarized in Figures 1.2 and 1.3, respectively.

4.0 AUTOCORRELATION TECHNIQUE SIMULATION

In the autocorrelation technique, the waveform processor output Y is

characterized by the following operations:

G
Y = I akWk (1-15)

Y where Wk is the squared value of the envelope of the autocorrelation function

R r r(T) of the received signal r(t) at T = k/b, and.ak's are weighting coeffi-
cients

ak: (CTH - k/B) 2  if k < A)

t0 if k > XG

where G = BTH and A is a positive fraction < 1, which serves to truncate the

sum (1-15) to ( BTH - 1) terms. The autocorrelation function Rr(T) of the

g bandpass signal r(t) with complex envelope u(t) Csee (I-g), 1-10) and (I-li))

is given by

-L %--.. .- - - . - -.- - " -. - ' - -kA - -. . - . .. ..
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Table 1.1. Threshold Relationships of Radiometer Output Statistics
and SNR 0

C(Y HO) 2N

S(YIH 1) 2[S + NOB]

Q S2 2

SNR0  (BTH (YS) = GYin2

ra

¢-.2
'I '.' ' m"" " ' " , " '" ' % " " " % " ' " - "" "% - "" - '" ' '"
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Tabe 12.Comparison of Radiometer Simlulationl Results toTheory;

(200 Trials)

(a) BT H = 100

Input SNR -2 B-10 dB -5 dB

or Simlaon Theory Simulation Theory Simulation Theory Simulation

*iYIHO) 4.00 3.96 4.00 4.01 4.00 3.96

ik(YI YH1 ) 4.04 4.00 4.40 4.41 5.27 5.22

var(vIH0) 16.00 15.96 16.00 15.63 16.00 15.96

var(YIH1) -16.32 -20.29 -25.54

SNRQ -20.00 -20.14 0.00 0.25 10.00 9.98

(b) BT H =1000

InpDut SNR -20 dB -15 dB -10 dB

orSiulon Theory Simulation Theory Simulation Theory Simulation

S(YrH0) 4.00 4.003 4.00 4.003 4.00 4.003

9(v IHi) 4.04 4.044 4.126 4.132 4.40 4.407

var(Y'HO) 160 16.14 16.00 16.14 1601.4

var(YIH1) -16.20 -16.69 -18.57

SNR0 (dB) -10.00 -9.73 0.00 0.14 10.0 10.06
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Rr(T) = ReRu(r) e JWt (I-17)

where R u(T) is the autocorrelation function of u(t):* U

* FTH

R u(T) = u*(t) u(t-T)dt (1-18)
0

4 Since Rhru(, ) is itself a bandpass function of T, the envelope of Rr(t) is IRu(T)I.Thus, we have

2

fWk IRr*) R I J H u*(t) u t -)dt (-9
I 

Ik/B

Now, sincP u(t), given by

u(t) = vS + nl(t) - j nQ(t) (1-20)

is bandlimited to B, the simulation of (1-19) can again be performed by a
*I discrete-time model similar to that used in the radiometer simulation. The

discrete-time model is characterized by the following equations:

X2

Wk = u*[I/B]u[(-k)/B] (1-21)
I=k

G
Y = akW k  (1-22)

k= 1

and

W' if k < G
ak (1-23)

0 if k > XG
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The mean values of Wk and, thus, Y, under either hypotheses H0 or H1,

* Wcan be computed relatively easily from the discrete-time equations (1-21), (1-22)

and (1-23). These theoretical results are summarized in Table 1.3.

The variance of Wk and, thus, Y, is difficult to compute exactly, how-

ever, due to the complexity of Wk. (Computations of expected values of products

of eight Gaussian random variables are required here.) Under hypothesis H0,

the sum in Wk of (A-21) can be written as

G ( ) = N + + OwI-NQI )  (1-24)

f=k

where NII, NQ, NIQ and N,, are the sums defined by (with k ; 1):

G G
NII = ' nI(f)nI(f-k) NQQ = k nQ(1)nQ(f-k)

14

G G
NIQ = 2 nj(f)nQ(f-k) N = Ik nq(L)nI(f-k) (1-25)

1&=k 1=k

The above noise terms are zero mean, with variance (G-k)(NoBI2) 2  They are un-

correlated. For k << G, they are sums of a large number of independent random

variables. Thus, for k << G, they are, to a good approximation, Gaussian. We

* can therefore write Wk as

()2(n2 %2) (-6
k Wk = + nB (-26)

I
p

I

I.- where nA and n. are given by

nA  = NIl + NQQ B = NIQ NQI (1-27)

and are, to a good approximation, independent Gaussian random variables them-
i "  selves, with mean zero and variance 2(G-k)CNoB/2) 2 . Ths k isasurday

leigh random variable, to a good approximation. The mean square of Wk is equal
•to%

withmea zer an vaianc 2(-k)N 0 B/)
2. Thus Wkis squredRay
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* Table 1.3. Theoretical Relationships of the Mean Autocorrelatlon Detector
Outputs as Functions of G =BTH

1 22

" jH1) (12 s2{(-) 2 + (G-k( )[

4YIHO B)2 1 G 1

~(j0) 0 B O

S(YIH1) -S(YIH0 ) XGS2 + 2SN OB YTG SSx G + 2I -
4 ___ _____ _____k=1
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* =k' 32(G-k)2(~ 2(10 (G-k) CN0 B)4  (1-28)

The variance of Wk under Ho can thus be written as (see Table 1.3):j

2)() (1.) (G -k) 2 CN0B) 4  (1-29)

It can also be shown that Wk' s are uncorrelated (thus, independent). Based on
this approximation, the variance of Y in (1-22) can be written for HOas:

AG B 4  xG 4
varCY rHo) ) varCWk) CN B) (1-30)

k=1 k=1

*Combined with the results in Table 1.3, we finally obtain an approximated for-
6 mula for the autocorrelation detector output SNR (for the discrete-time model):

4 
IAG + 2SN B XG 12

SNR0 = AG 2 1-31

I' k

G Yin in
(1-32)

ErMIX7

4 Again, these results are summarized in Table 1.4 for easy reference. For cases
when Gyin 2/A LnC1/(1-AX)), where 0 4 A 4 1 (i.e., large BTH products), the
improvement of the autocorrelation technique over the radiometer approach is
given by the ratio

SNR correlation ;'1X Gi 2(-3
SRradiom-eter (~~ 2 (-3
SN0
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lip Table 1.4. Autocorrelation Technique Detector-Output SNR;

Theory for the Discrete-Time Model

4rCYIH1) -2 XIG + 2(2{XG1 1

varCYIH0J W: ,CO)

Autocorrelation :G Yin~LG~

Output SNR 0 [rxj

ivRadiometer Technique G Yn2

Output SNRG n

CN)Atoco rr I_ TX

(SNR) Radiometer (i)EGin + 2 fn~i,1

I0
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It is of interest to note that, for these cases, the optimum choice of X (the

summation truncation factor) is approximately = 1/2. For X = 1/2, the improve-

ment of the autocorrelation technique over the radiometer approach is given by

Rorrelation
SNR0  (l in)2  (1-34)
SNRoradiometer T Y

0 A/

*(The exact result is given in Table 1.4 for all A.)

Tables 1.5 and 1.6 compare the simulation results to the theoretical

predictions with Gaussian approximations on variance calculations. The follow-

ing observations can be made:

(1) Simulation results agree exceptionally well with theory for the

mean values of the correlator detector outputs for all values of G, Yin and X.

This is true since the theory for this part of the calculations is exact.

(2) Simulation results show that the variance of the detector output

Y under HI can be quite a bit larger than that under H0 for high Yin values.

Also, simulation results on the variance of Y is generally larger than the ap-

proximated theoretical predictions for A > 0.1, where Gaussian approximations

used in computing the variance of Y began to lose validity.

Based on the autocorrelation detector mean and variance simulation

results, the probability of detection versus -in for various PFA settings are

computed. These results are summarized in Figures 1.4 and 1.5. The improve-

ment in performance of the autocorrelation technique as BTH increases from 100

(Figure 1.4) to 1000 (Figure 1.5) is apparent. The truncation factor X in Fig-

ure 1.4 is 0.5, while that in Figure 1.5 is 0.1. The performance is relatively

insensitive with respect to A as long as X is > 0.1 and is < 0.8. This A depen-

dence is illustrated in Figure 1.6, where the probability of detection is plotted

against X for various PFA( 10-2 , 10 -4 and 10-6) settings and at various Yin (
-10, and -20 dB) for the case BTH = 100. Thus, we can regard Figures 1.4 and

1.5 to be the representative performance of the autocorrelation technique for

BTH = 100 and 1000, respectively.

He

%.. >;. .. > , . ... , . % .?,.,... .:..: ..:.
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Table 1.5. Comparison of Autocorrelation- Detector Simulation Results
to Approximated Analysis

i (a) BTH = 100; A 2 0.01

'Yin (dB) -20 dB -10 dB -5 dB

Theory Theory Simulation Theory Simulation Theory Simulationi e  or Simulation t

.,CY I H 0) 0.38 0.378 0.38 0.392 0.38 0.384

CfIH 1) 0.39 0.390 0.82 0.826 4.2 4.24

varCYIHO) 0.016 0.0251 0.016 0.0215 0.016 0.021

var CYH 1) - 0.0274 - 0.0235 - 4.1

Autocorrelation
Detector -21.1 -22.5 10.74 9.42 29.64 28.57
SNR0 (dB)

.-

(b) BTH = 100; X = 0.5

Yin (dB) -20 dB -10 dB -5 dB

Theory Theory Simulation Theory Simulation Theory Simulation
or Simulation eoISmlto

FCYIHo) 2.7 2.76 2.7 2.69 2.7 2.695

.CYI H1) 2.786 2.84 5.22 5.22 24 23.75

• varCY H0) 0.156 0.6 0.156 0.633 0.156 0.708

varCYl H1) - 0.665 - 6.22 - 91.4

Autocorrel ation I
Detector -14.56 -19.5 16.0 10.04 34.6 28
SNR0 (dB)

4 {
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Table 1.5. Comparison of Autocorrelation Detector Simulation Results

to Approximated Analysis

(c) BTH = 1000; X = 0.1

-4,

yin (dB) -20 dB -15 dB -10 dB

oriatheon Theory simulatio Theory Simulation Theory Simulationor Theryulimtitoon

S'CYIHo0  0.417 0.419 0.417 0.419 0.417 0.42

S( iHIJ 0.47 0.472 0.84 0.863 4.46 4.57

varCYIHo0 )  1.76x10 '.2.61x1O 3 1.76x10"3 2.6x10 3 1.76 x10 3 2.61x10 3

varCYIHI - 4.97x10-3  5.34 x 10-2  - 1.41

Autocorrel ation
Detector 1.16 0.17 20.06 18.76 39.7 38.2
SNR O (dB)

. .,. ':4 :,W':(:.:. 'W' ,.'.' :. , v.'w"".. ' W . ,- W 'W ' % a . . L
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Figure 1.4. Autocorrelation Method Simulation Results:
BT =100; XBT =50
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5.0 RELATIVE COMPARISON OF RADIOMETER AND AUTOCORRELATION TECHNIQUES
IN DETECTING FH SIGNALS

Relative performances of the radiometer and autocorrelation techniques
in detecting FH signals can be compared two different ways: (1) their detector

output SNR (as defined in (I-I)), or (2) their operating characteristics PD and

PFA Cin particular, in terms of the required input SNR Yin for the specified PFA
and PD).

Table 1.6 compares the two techniques in terms of their respective out-

put SNR's as functions of BTH and Yin* As shown in Table 1.6, the SNR0 of the

autocorrelation technique is significantly improved over that of the radiometer,

especially in large BTH cases and with high Yin' In typical systems, BTH is

large while Yin is small CBTH = 1000, Yin = -20 dB). In that case, the autocor-

relator's output SNR 0 is still 10 dB over that of the radiometer. As shown in

Table 1.6, the theoretical prediction on SNR 0 improvement agrees very well with

simulation results. Thus, this relationship can be described, to a very good

approximation, by the equation (see Table 1.4):

SNRoautocorrelator 2

SNR 0 rieL 
in

* Equation (1-35) indicates that this improvement, for a fixed X, is essentially

~(G Yin )2 , or YH2

A more detailed evaluation of the relative performances of these two

approaches, which is probably more useful in terms of actual system design, is

to compare their respective required input SNR Cyin) for a specified set of PFA

and P These data can be extracted from Figures 1.2, 1.3, 1.4 and 1.5. The
results are plotted in Figures 1.7 and 1.8. The relative improvements of the

autocorrelation approach over that of the radiometer, in terms of required yin

to give specified PFA and PD9 are summarized in Table 1.7.

4.

LN.

a.
a.

,%

.9

'a . h %( **'* **- ... .* ~ ~*'**I~*.**,. - 9 ... ,, •
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Table 1.6. Relative Comparisons of Detector Output SNR's

* (a) BTH = 100; x = 0.1

Simulation ITheoretical Prediction

Yin RImprovement of of Autocorrelation SNR0Radiometer Autocorrelation Autocorrelation Improvement Over
(dB) SNR 0 (dB) SNR 0 (dB) over Radiometer Radiometer

in SNR0

-20 -20.14 -22.5 -2.36 (dB) -1.1 (dB)

-10 0.25 9.42 9.17 10.74

4, -5 9.98 28.57 18.6 19.64

(b) BTH = 1000; X = 0.1

Simulation

Improvement of Theoretical Prediction

Yin Radiometer Autocorrelatiun Autocorrelation of Autcorrelation SNR 0
SNR (dB) SNR 0 (dB) Over Radiometer Improvement Over

(dB) in SNR 0  Radiometer

-20 -9.73 0.17 9.9 (dB) 11.6 (dB)

-15 0.14 18.76 18.62 20.06

4 -10 10.06 38.2 28.14 29.7

IC

.4

,A
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Table 1.7. Relative Improvement of the Autocorrelation Technique Over the
41 Radiometer Approach in terms of Required Input SNR Yin

For Desired PD and PFA Performances

I Improvement of Autocorrelation Technique
over Radiometer (dB)

BTH PFA P"

P0  0.9 P 0.8 P 0.7 D0. 6  P 0.5,

10.5 5.4 5.5 5.5 5.6 5.7

100 10- 3  3.8 4.0 4.4 4.6 4.8

10"1 2.6 2.7 2.8 2.9 3.0

* 10-5  8.3 8.3 8.4 8.4 8.5

1000 10.3  6.8 7.0 7.1 7.3 7.5

10-1 5.2 5.3 5.4 5.4 5.5

'S

C"
S.



APPENDIX J

STATISTICAL CHARACTERIZATION OF NOISE PROCESSES

ka(T) AND n(r

Let

k I(T Cos -k

* and

no , k 1 8(-)) COS WOT + ( Q1B(') sin wT(J-2)

where

I (T) = H c(t) cos(Awkt -*)dt (J-3a)
0k f

a k fTH c(t) sin (Awkt -fk)dt (J-3b)

T

I (T) = THC(t-T) COS3ck cfs(Awkt-.kOdt (-c

C- and

* Q(T) = H c(t-T) sin(Akt.)dt (J-3d)

with =w -O wk. Equations (J-1) through (J-3) are also given by (5-42) and
(5-43). First, since c(t) is a random code with S~c(t)) = 0, it follows that the

noise processes in (J-1) and (J-2) are zero mean, and that

varct(T4 var8r4= ( )2 (J-4)

VV - - .' -~V % . C %.~ 'V %-V~.V.VV "
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We shall first establish (5-47), i.e., claim (a) in section 5.2.2.

We have from (J-3a) that

I mH co C~)t kd t  N -I1 f(n+l)T sC~ o+ F" o :,+
ck CmTc) J c(t) Cos- = N-i ck On - #kdt

A kfd I n+1 )T o 1 AktCT fIAn-m f L_
MT c nT cc

A N-1
S cn+ 1 1n+ 1  

(J-5)n=m

where cn+ 1 is the (n+1) th code chip and

f (n+l)T c cos [(iwkct- 4k dt (J-6)In+1 -_
nTc 21,.¢

Let c = 9-9c Then,

i/I"i

-9=m q (*kCmT))
.S-k

N 1 1 -~ c T (J-7)

k ~k In=m n=mn1 +1 n+1

But *

* Cn+ 1 Cn,+l ' nn, PN::0 , otherwise

which reduces (J-7) to 0

-r .CmTc) = 1kn~ l n-m k (J-8)

(10



* However,

f~n~l)Tcn+l)T

'r* I *~ -k O k J c COSCAwkt~dt + sin slOkktd)

nT ~nT t
c 2

(kf(n+l)Tc COS(Awkt)dt) (f(n+1)TC sinCAwkt)dt)] -9

But

fb (' (Aw) bJ cosC&wkt")dt = ~ sinx -(41)[sn(Aw)b - sin(Aw)aj (01O-a)

and

bsiflC&*kt)dt = (-L)[cos(Aw)a - cos(Aw)b (J1O-b)

Upon inserting (J-10) into (J-9) and combining with (J-8), it follows that

S k m~c 1 Nil Isin(n+l)(&wk)T - sin n~kT
a~~~c) 2 Cwk) 2 n ~ am 1(Tc

+(cos nCAwk)Tc- cos(n+1)CAwk)TC)2

2 i 2 F[ wk T]
*1 N-1 21i 21 I

2 2- 2 cosCwk) (N-rn)2C~wk) num Ul C-

or

I CMC))2 (N-rn)T c2  2 [rwk0 (1C~) 2 k a- Sa jfwc J(J-11)

which is (5-47).
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We shall now proceed to prove claim (b), namely, that each noise

* process nc(t);k=l,...,M and ng(t) have uncorrelated (and, by the Gaussian assump-

tion, independent) inphase and quadrature components. From (J-3a) and (J-3b), we

can write

I k si (J-12a).- (> Ak cos fk k A Sin Ok

and

Qx(T) =Ak cos k-A, sin (J-12b)

where we define the random variables AQ and A, as

I k = c(t) cos dt (J-13a)

and

SAQ = c(t) sin Awkt dt (J-13b)

Thus, from (J-12),

w+[(A? )2Iif cosfk(

dajA 1AQJ & cos 2, fkl~D~k)k r 2 sin 2 k~ 0 (J-14)

which proves the uncorrelatedness of aci(T) and a(T). In a similar manner,

OI(T) and OQcT)are shown to be uncorrelated. Furthermore, Bk(T) and 0m(T) for
krm are also uncorrelated since they correspond to independent phases *k and fm.

This implies that the random variables

M i M

O B(T) and

k I k
k= 1 k=1

N-1
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which constitute the inphase and quadrature components of no( ), are uncorrelated.

P This concludes the proof of claim (b).

The proof of claim (c) is based on the simple fact that

j(r ()i= 0 ; kfti~=I,Q (J-15) W

since *k and *m are independent Csee (J-3)). Finally, in order to substantiate

claim (d), we look at n(T) at T = 0 and Tc. Then,

c1(o) f H c(t) cos(Akt - Ok)dt- fTc c t) cos(A kt - *k)dt + (TC)

0 0

I CTc) (J-16)

since the first term Cintegral from 0 to Tc) is negligible compared to the
I

(N-1)Tc integration involved in ak CTc). Thus, ak (O) is almost equal to (i.e.,

very correlated with) kC.rc), and the same holds for aQ(r). It follows that

n"(T) is a highly correlated noise with respect to the Tc time interval. On

the other hand,

S(o ) f c c(t) cos(Awkt -k)dt (J-17a)

0

while

C0 c)= fcTH cot - Tc) cos(Awkt" ,k)dt
k£

. f "THTc c(.) cos(Aw . + kTc - k)dt'

0

z 0(o0)cos(Awk Tc)- O(o) skn(Aok T) (J kc;

k k.
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* Thus, the degree of correlation between nk(O) and okCTc) depends on the phase
k=kI I* shift AwkTc. If, for instance, (fo-fk)TC = 0 or 1/2 or 1, then Ok(O) and 1k Tc

are highly correlated while, if Cfo-fk)T c = 1/4 or 3/4, then OICTcJ z 3Q(O),

which is uncorrelated with aM(0)! Since similar rules hold for 0(T), we con-

clude that the correlation time of the noise no(T) varies with Cafk)Tc. For the

particular case of one interfering tone on the signal frequency, i.e., f1 = fo'
it is concluded that no(O) z nOTc), resulting in a highly correlated noise

(which is a favorable case here).

.4

a..

a.

S
-a

a,
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APPENDIX K

PROOF OF EQUATION (5.52)

From (5-50), we have that

CST H
) 2

+ 2y,-'(1 + 2, ,norm] (K-1)

where

a ,nom =- H  cos f 1 1c n  (K-2)

*." Clearly, ,(a1}norm) = 0; which, upon substitution in (K-i) immediately yields

(5-52a). Furthennore, from (K-i) and (5-52a),

var{jIH,1 = var 2CSTH)2 TI' ajnor4 = 4CSTH)4  -1 varla,,norJ

= 4STH) 4  '- ( (').N (K-3)

since varjcos 1 =1/2 and the cn's are independent, so that

var cn  = N-var {cn) = N

If we recall that N - TH/Tc , we conclude from (K-3) that

= 2CSTH)4

var 1  
=  NI (K-4)

i.e., (5-52b).

9~~~ ~~~ * e9 .- 43cC4



APPENDIX L

RADIOMETER PERFORMANCE FOR THE FH/DS CASE WITH RANDOM TONE INTERFERENCE

The radiometer output Yrd=yO can be written *-s

Y rad =STH + MIlTH + 2 I4T[l a(O] (L-1)

where Ii is the power per tone, so the total power for M tones is I =MI 1. In

our formulation, M is a random variable, taking values in the set ['s 29. ..,MNax1
with equal probability in each hop. Conditioned on M, the mean and variance of

Yra are

4% Y dIm = STH + MIlTH = CS + MID)TH (L-2)

and

var lYrdHM = 4SIj*~( I k(O) M = 4SI1 M k~(i() (L-3)
ra (k=1 Ik=1 ~

where we have used the fact that a 0 and ac1m(0) are uncorrelated for k~m. (See
Appendix J.) Furthermore, the second moment of ak(O) is given by equation (5-47)

which, upon substitution in (L-3) for m=O yields

vari Yrad IM 2SIi NTc 2 Sa 2IEr~fo-fk)TI = 2SI T H T 1(M) (L-4)
k=1 L Jc

where 
1

MS

L(M) MSa ff) (L-5)
k=1 c

and the fact that T H =NT c has been used. 0

Pt;

160
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Under the Gaussian assumption for Yrad (conditioned on M), we can

Seasily derive the conditional detection probability under hypothesis HI as

orad = r= Q HL-6)p .DIM  Pr{Yrad

where Y0 is the detection threshold and equations (L-2) through (L-5) have been

used. Clearly, under Ho, the first and third terms in (L-1) disappear, so that

Yrad = MIl TH under H0  (L-7)

with probability 1. This implies that the conditional false-alarm probability

is two valued:

.5 '

Prad 1 if MIlTH > YO
PAIi 0 ,if MIITH YO

In deriving (L-8), we have implicitly assumed that the detector decides H0

whenever the radiometer output Yrad is exactly equal to the threshold YO"

" If we now insert the equidistribution assumption about M between 1 and

Mmax , we can average (L-6) or (L-8) with respect to M in order to obtain 
the

overall rad and Prad Thus,nD "FAiHI
prad = rad Mmax S+MI)TH (L-)

D SMDIM - Mmax - 1"(+MI)
max Ml=1 42SrlTHTcL (M

while

rad Myo
-FA (L-1Oa)
i

where Myo is the largest integer not exceeding YO/IjTH, i.e.,

. S.
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-j if T 4Mmax

In (L-l0b), LIdenotes "inege par 4of. uthroe for a desired rad levl

My i n e tolcmaxiied raen d Osol ecoe ttelws loal ee

in oderto axiizePr. Clearly, this choice is

9D *

We note that, in the case treated here, i.e., no thermal noise, Prad can assumeFA rad
I"only discrete (quantized) values, as dictated by (L-l0a). In other words, PFA

can only be of the form

P rad =k' 1 =~,.,Ma (L-12)
FA Max'

We can now combine (L-9) with (L-l1) in order to get the radiometer's
4 firoperating characteristic as

frad\M (S)

Mmax MrFA)-rI PF)
Pra Q A (L-13)ma M=l L ('7S- jfr

If we let Ydenote the signal to single-tone power ratio

I'

:9Iand recall that N =TH /T c we conclude that
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rad 1 max M max(1 - FrAd - M 1(L-15)D M max 1 M 2[a )T% 2yl 1. I~ Sa2  -~ kj T

ra dwith PF k/N k=O,... MmaFA ~maxma

As an interesting side result, let us consider the limiting case where N-*.-,

i.e., the DS code rate is much larger than the FH rate. Since this would cor-

respond to T c * 0 (Cfor a fixed TH), we conclude that

lim a2 B f fT 1  1 1 urn Sa2 nf- k)Tdl M (L-16)
N-*-. k = 1 ~ k=1lT O LW0f cf

since lrn Sa 2x) = 1. Therefore, the whole denominator of the Q(-) functions in

(L-15) tends to zero,

which implies that

= 1 if M > NMal _ pra) _ yLli

N-*..ao 0 if M4< ma( - prad)

V Therefore, from (L-16) and (L-l7),

M M + M -rad -
T max D '

urnMma = 1 - -(L-18)

where Mis the minimum N such that M > 14ma (1 _ prad) - TI. Equation (L-l8)

can be rewritten in the final, more compact, form, i.e.,
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I i,"max(LMmax(F A
urn prad = 1 - (L-19)

N+o Mmax

So, for instance, for Mmax = 2, it is easily derived from (L-19) that

r rad 
21/2 if PFA 

= 0

N-)N-+- DI if PFA 't/
a li.O .0

" as expected. More generally, for an arbitrary M max'

lim Prad . Prad + 1
D FA R_pN -FA max

The case treated in the text, Mx =1, is slightly different from
that which is presented in this appendix. In particular, let us assume that

in each hop, either none or one interfering tone can be present with equal
probability, i.e.,

Pr[M=O] a Pr[M-I] - 1/2 (L-20)

Then,

M _ra ma -_PFAd - YI- YJ+1'-M maj, -'Pr d
"rad = I- = 1- Q FA (L-21)

where

TI Ti (L-22)

and we have assumed that f1 = fo (interference centered on signal frequency).
.rad O esol e h

Here, Mm =1. Furthermore, if we wish to have PFA a 0, we should set the
max F

e |
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threshold Y= IT Then, under signal present CHIj) but tone absent (M * 0)

conditions, it follows that

Yrad = STH (M = 0) (L-23)

Clearly, this output will result in an H1 (correct) decision if and only if:

STH>YO = ITH 4 >S>I* *yI>l (L-24)

Thus,

grad = 1, if YI > 1= <ad (L-25)
DIM=O 0, otherwise

For the same desired level "rad -09 (-21) yieldsFA -

P rad 1 - Q (L-26)

The final detection performance is the average between (L-25) and (L-26), and

is given by

1 ilf Y,> 1
rad 1 rad radPO -- M wDI PI D 1 -0
Frad = 0Q" QE ) if Y < 1

as per (5-55).

' . . .4. *** °. * .4. . . . . . . . .o . . .U . . . 4i.4. 4 * * . V% L .
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APPENDIX N

SIMULATION OF THE FH/DS CASE IN RANDOM TONE INTERFERENCE

The received signal is given by

r(t) = VS' c(t) cos w0t + M2T cos(wit + #1) (N-i)

Recall from the text that
?4

N - Rc/RH (M-2)

with Rc representing the code rate and RH being the hop rate. The real-time

autocorrelator is specified by

y(T) f JTHr(t) r(t-r)dt 0 4 r ( TH (N-3)
TH

Letting wO = w, with unknown phase difference #1 and putting (M-1) in (M-3) yields

.-
Y(T) S Sy (') Cos w0' + I(T-TCOS Wir + /~ n'3(') + no(T) (M-4)

with

= I

nI(r) = 1 (T) CO + 0()sin W0T (N-6)

1(T) = cos 1I c(t)dt (N-7)

°1 f .
aQi(T) = -sin o, c(t)dt (M-8)1 f.

T

0 (T) = -S #1 c(t-T)dt (M-9)

O()=-sin 0fTH t-d (M- 10)


